
Fast, Energy Efficient Scan inside Flash Memory SSDs

Sungchan Kim
Chonbuk National University, Korea

sungchan.kim@chonbuk.ac.kr

Hyunok Oh

Hanyang University, Korea

hyunok.oh@hanyang.ac.kr

Chanik Park

Samsung Electronics Co., Ltd., Korea

ci.park@samsung.com

Sangyeun Cho
University of Pittsburgh, U.S.A

cho@cs.pitt.edu

Sang-Won Lee
Sungkyunkwan University, Korea

wonlee@ece.skku.ac.kr

ABSTRACT
Today, an SSD (Solid State Drive) is essentially a block device
attached to a legacy host interface. As a result, the system I/O bus
remains a bottleneck, and the abundant flash memory bandwidth
as well as the computing capabilities inside SSD is largely
untapped. In this paper, we motivate an efficient in-storage
computing approach where (part of) data-intensive processing is
moved from the host CPU to inside flash SSDs, close to the data
source itself (“in-storage processing”). Especially, we focus on
accelerating a key database operation, scan. To realize the idea in
a cost-effective manner, we deploy special-purpose computing
modules using the System-on-Chip technology. While data from
flash memory are transferred, a target database operation is
applied to the data stream on the fly without any delay. This
reduces the amount of data to transfer to the host drastically, and
in turn, ensures all components along the data path in an SSD are
utilized in a balanced way. Our experimental results show that in-
storage processing outperforms conventional CPU based
processing by over 13 times for scan operation. It also turns out
that in-storage processing can offer sizable energy savings of up
to 7×. This drastic performance improvement is mainly
attributable to the parallelism inside single flash SSD, while the
similar existing hard disk based approaches have not been such
successful because of the limited I/O bandwidth provided by
conventional hard disk.

1. INTRODUCTION
Recently, there is a substantial influx of NAND flash based Solid
State Drives (SSDs) in the enterprise storage market [1]. For
example, large-scale storage appliances like Teradata’s Extreme
Performance Appliance [2] and Oracle’s Exadata [3] harness
SSDs to realize very high I/O operations per second (IOPS).
Moreover, there are a host of positive forecasts for SSDs in the
enterprise market [4].

Most prior developments have focused on the potential of flash
SSD as fast and cost-effective hard disk (in terms of IOPS/$) with

the legacy block interface. Taking into account the impressive
performance and other advantages of flash SSD, this approach is
very practical and will remain mainstream for a while. However,
we argue that this conventional usage model of SSD fails to fully
exploit the performance improvement opportunities offered by
continued semiconductor technology advances. Notably, the
aggregate raw bandwidth of flash memory devices in SSDs has
already exceeded the peak bandwidth of most existing legacy
interfaces. Furthermore, future SSD controllers are expected to
have high computing power by necessity, as they integrate parallel
flash interfaces, large high-speed memory, and more compute
cores and logic. Sticking to the legacy block interface implies,
unfortunately, that the abundant flash memory bandwidth and the
computing capabilities inside SSD will be largely untapped.

Meanwhile, new digital data are generated at astounding rates.
Digital information stored in corporations, on the public Internet
and on home computers is doubling every month [5]. The size of
the web pages indexed by Google was roughly 20 Billion in 2009
and is climbing to 30 to 40 Billion as of March 2011 [6]. The
enterprise systems domain is no exception and petabyte databases
are realistic (e.g., eBay’s 2.4 PB relational data [7]). Large-scale
data analysis has become common and will be increasingly
important for enterprises. In order to efficiently warehouse and
analyze data at such scales, a shared-nothing, massive parallel
processing storage tier of many storage servers is common [8].

Unfortunately, the performance of key data-intensive applications
is and will be severely limited by the available system bandwidth
(through I/O, network, main memory and CPU memory hierarchy)
and low data locality [9][10][11]. In large data-intensive
applications like TPC-H and Map-Reduce, the dominant
computations on data are relatively simple scan and filtering,
aggregation, sorting and join; data sets flow from the storage (to
network) to all memory hierarchy levels in the host, only to be
touched by the CPU briefly. Bandwidth mismatch along the data
access path results in performance loss and moving around the
massive data consumes sizable energy. This unwarranted
inefficiency, of both performance and energy, remains a serious
roadblock to database systems to scale out.

In order to significantly improve the efficiency of data-intensive
computing, this paper proposes and explores the idea of
accelerating database operations for data warehouse workload by
moving all or portions of data processing to inside flash SSDs, as
close as to the data source itself (i.e., flash memory chips). We
refer to this approach with a term “in-storage processing” (ISP in
short). To motivate this approach, this paper will focus

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. This article was presented at:
The Second International Workshop on Accelerating Data Management
Systems using Modern Processor and Storage Architectures (ADMS’11).
Copyright 2011.

specifically on table scan, one of the key access methods in any
database system.

The contributions of this paper can be summarized as follows.
First, using the state-of-the-art CPU, DRAM and flash memory
specification, we investigate which hardware component becomes
a performance bottleneck when we execute a TPC-H query
processing on modern flash SSDs. Second, we explore the design
space to obtain appropriate SSD architectures for the scan
operation. Third, we formulate and validate models that explain
the performance differences between a conventional host CPU
based processing, an ISP using CPU embedded inside flash SSD,
and an ISP using dedicated SoC hardware logics on flash memory
controller. Our results show that both embedded CPU- and
hardware-based ISPs outperform host processing by as much as
13× for scan. The ISP approach is promising also in terms of
energy efficiency; our results show that measured energy saving is
large (as much as 7×) with hardware-based ISP.

In the remainder of this paper, we will first discuss prior related
work in Section 2. Section 3 will describe important details of
SSD’s hardware architecture. Section 4 gives the proposed ISP
framework on an intelligent SSD architecture and formulates its
performance models. We map a key operation, scan, to the ISP
framework. Detailed performance evaluation of the ISP
framework is given in Section 5, and finally, Section 6 concludes.

2. RELATED WORK
The idea of database machines in 1970s and 1980s was shown to
have the potential of achieving great performance improvements
for simple operations (such as “scan”) with processor per head,
track, or disk [1][12][13]. As summarized in [14], however,
database machines failed to be commercially successful for
reasons: First, most database machines employed special-purpose
hardware (such as associative disks and magnetic bubble memory),
but the performance gains were not enough to justify the
additional cost and design time. Second, improvements in the
host-side processor architecture were much faster than disk
bandwidth, leading to the underutilization of the special-purpose
hardware. Finally, there was little performance gain for complex
operations like join.

In late 1990s, when the disk array became popular and the disk
controller was equipped with low-cost general purpose CPU and
on-board DRAM, some researchers explored the concept of active
or intelligent disks that execute database operators inside the
storage controller [15][16]. They aimed at offloading the host
CPU with the excess computing power of the embedded CPU in
disk drives and reducing the data transfer between the host and the
storage. They suggested in-storage processing of primitive
operators like scan, selection, aggregation, project, sorting and
join [17][18]. However, these approaches didn’t take off due to:
limited storage interface, overheads of changing database software
[16], the lack of large data-intensive killer applications and the
absence of vendors who drive changes actively. In fact, while hard
disks dominate the storage market, there was no compelling
technical and commercial reason to drive changes to the storage
interface and the DBMS software stack.

However, we do not believe that the concept of active disk has
failed. In fact, it has morphed into different forms. Recently, for
example, Teradata’s Extreme Performance Appliance [2] and
Oracle’s Exadata [3] have started to put complex processing into
their storage servers. In particular, Exadata can execute SQL
projection, restriction and simple join filtering. They seem to have

developed new proprietary storage interface between the host
machine and the storage servers and changed its DBMS software
stack to leverage the processing power inside storage.
Consequently we anticipate that the data filtering effect of ISP (as
suggested by active disks) will be of increasing significance as the
aggregate storage bandwidth grows, clearly evidenced with the
introduction of SSDs.

Our work shares the same spirit with these efforts and strives to
develop more intelligent storage devices. We focus specifically on
flash SSDs. As we will discuss further, we identify that an
embedded CPU-based ISP may not be the most desirable in flash
SSDs, and in turn, suggest a hardware-assisted ISP.

There is a fundamental difference among our approach, the
database machine approach, and the active disk work approach.
The concept of the active disk was mainly motivated by the
superfluous computing power inside individual disks. In a similar
vein, as Boral and DeWitt concluded in their retrospect paper for
database machines [14], the limiting factor was the I/O bandwidth
of storage media (i.e., disks), not the embedded CPU’s processing
power or the DRAM bandwidth. Therefore, the existing “CPU-
based ISP” with hard disks was I/O bound. In contrast, the
proposed ISP with SSD is no longer I/O bound. Instead, the CPU
processing power and the DRAM bandwidth inside flash SSD
become new bottlenecks. There are two reasons as following.

First, the internal I/O bandwidth of flash SSDs can easily scale by
adopting multi-way interleaving over multiple NAND flash chips
on a shared I/O bus using multiple chip enable signals [19].
Furthermore, multi-channel interleaving is used with multiple
independent flash controllers. The multi- way and multi-channel
interleaving of NAND flash memory chips have been deployed as
main techniques to significantly improve not only sequential read
and write performance but also random read and write
performance.

Second, new flash memory chips themselves come with much
improved data bandwidth; NAND interface has evolved from 40
Mbps single data rate to 400 Mbps double data rate [20].
Therefore, assuming an SSD with 16 channels where each channel
connects to 400 Mbps 8-bit NAND flash memory, the aggregated
raw bandwidth amounts to as high as 6.4 GB/s! This raw
bandwidth simply surpasses the computing power of
contemporary embedded CPUs like ARM9 processor, as well as
the bandwidth of DRAM and system bus bandwidth. As a
consequence, embedded CPU- based ISP inside a flash SSD
would be CPU-bound and data processing cannot proceed at the
maximum speed of the storage media bandwidth.

Beside ISP, there have been a plenty of works that are focused on
acceleration of database operations with the aid of external
special-purpose or commodity hardware. In [21] and [22], the
authors presented an FPGA-based approach, where an FPGA is
attached to the host interface of a conventional hard disk. In their
approach, data from the disk are fed into the FPGA for
preprocessing as necessary, offloading computation burdens of the
host processor. Commercial realization of this idea is found in
[23]. In another approach, acceleration of primitive database
operations with the IBM Cell processor has been studied [24][25].
Lastly, the use of general-purpose GPUs to speed up database
operations has been examined [9][26][27]. The main ideas of
these studies are similar to ours in that the performance of
primitive database operations can be improved with the aids of
external, non-host computing resources. However, the major

difference is that we carry out the acceleration inside a flash SSD
directly. It is the most scalable solution in a cost-effective way to
satisfy the huge computing performance requirements of large-
scale data processing applications with tens or hundreds of disk
drives.

3. BACKGROUND: FLASH SOLID STATE
DRIVES
Figure 1 illustrates the general architecture of an SSD with its
major components: a host interface controller, a NAND flash
memory array, flash memory controllers, an embedded CPU, and
a DRAM.

Host Interface Controller: The function of the host interface
controller is to support a specific bus interface protocol such as
SATA, SAS, and PCI-e. The host interface bandwidth has steadily
increased with the introduction of new standards, from P-ATA to
SATA in desktop systems and from SCSI to SAS in enterprise
applications. The bandwidth of the SATA interface ranges from 3
Gbps to 6 Gbps today. Recently, PCI-e has emerged as a new
interface for storage due to its scalable bandwidth and relatively
short latency compared to other existing storage interfaces. The
PCI-e interface has additional benefits to SSD because host
resources can be utilized for memory and computing-intensive
parts of flash management such as address mapping and wear
leveling.

ECC, DMA
8/16 channel, 8way

NAND I/F:
40MB/s 400MB/s

User buffer (Read/Write)
Meta data (e.g.,Mapping table)

FW execution
(host cmd, mapping)

SATA 3G(250MB/s)
SAS 6G (1GB/s)

PCIe x16 (6GB/s)

Embedded

CPUs

Figure 1: The general architecture of an SSD.

NAND Flash memory: An array of NAND flash memory is used
as the permanent storage medium for user data. A flash memory
consists of multiple blocks, each of which has multiple pages. A
block is a unit of erase operation while a page is associated with
read/write operations. NAND flash interface has evolved from 40
Mbps single data rate to 400 Mbps double data rate [28]. Unlike a
hard drive, an SSD can achieve scalable performance in
proportion to the number of NAND flash memory chips to be
integrated.

Flash Memory Controllers (FMC): FMCs are responsible for
data transfer between DRAM and NAND flash memory using
Direct Memory Access (DMA). They also guarantee data integrity
based on Error Correction Code (ECC) like Reed-Solomon and
BCH. As NAND flash memory is continuously shrunk, a stronger
ECC capability is required. As a result, ECC logic has become a
dominant part of an SSD controller chip in terms of cost and
power consumption. An FMC also utilizes multi-way interleaving
over multiple NAND flash chips on a shared I/O bus using
multiple chip enable signals [29]. Moreover, multi-channel

interleaving is used with independent channels and FMCs [30].
The multi-channel and multi-way interleaving of NAND flash
chips have been deployed as main techniques to improve the
performance of both sequential and random accesses. The FMC
can be implemented as dedicated hardware for high performance
and power efficiency or an application-specific instruction-set
processor to support diverse NAND flash memory commands.

Embedded CPU: The embedded CPU(s) together with SRAM
provide the execution environment for running flash management
firmware called Flash Translation Layer (FTL). FTL parses
incoming host commands and translates associated logical block
address (LBA) to physical address on NAND flash memory based
on a mapping table [31]. Typically, a 32-bit RISC processor is
used, which runs at 200 to 400 MHz. Depending on the
performance requirement of a given application, multiple CPUs
can be incorporated to handle multiple host requests (i.e., NCQ)
and NAND flash management simultaneously.

DRAM: DRAM is used to temporarily save user data and FTL
metadata. Its size can range from tens to hundreds of MB
depending on the target application. Because DRAM is the target
of data transfers from both the host interface and FMCs, it is
operated at a high clock frequency of 667 MHz or higher, which
corresponds to the bandwidth of 2.6 GB/s or more (32-bit bus).

4. IN-STORAGE PROCESSING OF SCAN
OPERATION
In this section, we present the details of in-storage processing to
perform primitive database operations inside SSDs. We first
explain how to carry out ISP in a baseline SSD controller, and
derive an analytic model to capture the performance
characteristics of ISP according to the variation of architecture
parameters. We then propose a cost-efficient solution with special
computing modules that are dedicated for computing-intensive
functions in place of an embedded CPU in an SSD controller.
Finally, we provide the performance model of a conventional in-
host processing for the purpose of comparison.

CPU
Local

memory Flash
Memory
Controller

(FMC)DRAM
controller

DRAM

ⓐ
Flash
transfer

ⓑ
FMCDRAM
transfer

ⓒ
Computation

ⓓ
DRAM  Host interface
transfer

Host
Interface

In-Host Processing: ⓐ  ⓑ  ⓓ
In-Storage Processing: ⓐ  ⓑ  ⓒ ⓓ

Flash
Memory
Controller

(FMC)

Figure 2: Data path in the baseline architecture.

4.1 Preliminaries
Figure 2 illustrates our baseline architecture, where an embedded
CPU1 is the only computation resource. Therefore any data to be
processed should be sent to DRAM, paying the cost of data
transfer time. There are two types of DMA transfers in the

1 The term ‘CPU’ indicates the embedded CPU inside an SSD controller.

We use the term ‘host CPU’ to refer to the CPU of a host machine.

baseline architecture. First one occurs between FMCs and the
DRAM (FMC-DRAM DMA) while the other is the transfer
between the DRAM and the host interface (DRAM-Host DMA).

Both DMA operations are always invoked on any data request to
an SSD. Thus, we first develop the performance model of the
DMA operations that are basic building blocks of the analytic
models for both ISP and in-host processing (IHP).

FMC-DRAM DMA: We begin by defining some notations to
describe an FMC and flash chips. ௖ܰ௛ is the number of FMCs in
an SSD controller, i.e., the number of channels and ܰ௪௔௬ is the
number of ways in a channel. We also define ܮ௣௔௚௘	to be the size
of a single NAND flash page in bytes. Then, let ݐ௙௟௔௦௛_௥௘௔ௗ be
time to read P bytes from flash chips to the FMC ignoring cycles
to issue an operation command. Similar to the derivation in [32],

_flash read page R
page page way

P P
t t t

L L N

   
    

      
 (1)

where ݐ௣௔௚௘ is the elapsed time to load a page from a flash
memory bus after the busy phase for a page read, ݐோ . These
parameters are easily obtained from vendor datasheet books.

We also define ݐ஽ோ஺ெ_௥௘௔ௗ and ݐ஽ோ஺ெ_௪௥௜௧௘ as time to read or
write P bytes from/to the DRAM. When performing FMC-DRAM
DMA, data transfers at both flash chips and DRAM are activated
in a pipelined fashion to maximize transfer efficiency. As such, if
we define ݐிெ஼→஽ோ஺ெ	 as time for FMC-to-DRAM transfer of P
bytes, it is bound to a longer path between them. Therefore,

 _ _max ,FMC DRAM flash read DRAM writet t t  (2)

For brevity, the details of ݐ஽ோ஺ெ_௥௘௔ௗ that require DRAM
architecture specific parameters are omitted, but those parameters
are statically determined once the amount of data transfer is given.

DRAM-Host DMA: Next, we focus on time to transfer P bytes
from DRAM to the host interface and denote it by ݐ஽ோ஺ெ→ு௢௦௧.
Similarly we use ݐு௢௦௧→஽ோ஺ெ to indicate the transfer in the reverse
direction. We also define additional parameters ݐு௢௦௧_௥௘௔ௗ	 and
ு௢௦௧_௪௥௜௧௘ݐ as time to read and write P bytes through the host
interface, which corresponds to the host interface speed. Similar
to FMC-DRAM DMA, DRAM-Host DMA is also assumed to
work in a pipelined fashion. Therefore,

 _ _max ,DRAM Host Host write DRAM readt t t  (3)

 _ _max ,Host DRAM Host read DRAM writet t t  (4)

4.2 Baseline Architecture
In the scan operation, the ‘where’ clause of a SQL query is
performed on each record, returning only the matching records to
the host. ISP of the scan operation on top of the baseline
architecture is straightforward as depicted in Figure 2. In the first
step, a table to be processed is partially read from FMCs into

DRAM using FMC-DRAM DMA (ⓐ and ⓑ in the figure). We
assume that the table is evenly distributed over all NAND
channels such that the table may be loaded at the maximum

bandwidth the flash chip array offers. In the next step (ⓒ), the
embedded CPU scans the partial table in the DRAM. At the same
time, the matching records of the table are output to another
location of the DRAM. If “aggregation” is required, the embedded
CPU just updates the aggregated result instead. Finally, the result

of the ISP is delivered to the host using DRAM-Host DMA (ⓓ)
in response to the query. The procedure above is repeated until the
entire table is examined.

In order to derive the performance model of the ISP for scan,
suppose that a table has ௥ܰ௘௖	records and the length of a record is
fixed to ܮ௥௘௖ bytes long. We use ݐ௦௖௔௡_௖௣௨ to denote the
computation time by the CPU to scan the entire table. Then, it is

 _ _ _scan cpu rec scan comp scan resultt N t t    (5)

where ߙ is scan selectivity, ݐ௦௖௔௡_௖௢௠௣ is time for the CPU to
execute the scan operation on a single record, and ݐ௦௖௔௡_௥௘௦௨௟௧ is
the time to write a matched result, i.e., copy of the record or
update of an aggregate value, to DRAM. The lower ߙ is, the
smaller the amount of data transfer to the host becomes. For
example, ߙ would be almost negligible if we perform Scan-
Aggregation since a single value will be sent to the host as a result.
Note that ݐ௦௖௔௡_௖௢௠௣ and ݐ௦௖௔௡_௥௘௦௨௟௧ depend on the
implementation of the ISP. Since the exact modeling of those
parameters is non-trivial and beyond the scope of this paper, we
resort to measurement results, as will be explained in Section 5.1.

Then, let ݐ௦௖௔௡ be the execution time of the scan operation for the
table. Since the operation is composed of the three sequential
steps, FMC-DRAM DMA, computation by the CPU, and DRAM-
Host DMA, it is formulated as follows:

_
rec rec rec rec

scan FMC DRAM scan cpu DRAM Host
ch

N L N L
t t t t

P N P


 

  
  


(6)

Note that data delivered to the host depends on the scan selectivity.
If we want to reduce ݐிெ஼→஽ோ஺ெ for better performance, we may
widen the peak bandwidth of the flash chips by using more
channels or faster flash chips as long as the DRAM bandwidth
surpasses that of the flash chip array. Otherwise a faster DRAM is
a proper solution, which also reduces ݐ஽ோ஺ெ→ு௢௦௧ . Even though
 ஽ோ஺ெ→ு௢௦௧ may also be improved by a faster host interface, weݐ
assume the host interface and DRAM speed are fixed so that the
variation of ݐிெ஼→஽ோ஺ெ depends on the configuration of the flash
chip array only, and ݐ஽ோ஺ெ→ு௢௦௧ cannot be altered.

Experimental results show that more than half the latency of the
baseline ISP is occupied by the embedded CPU. However, to
reduce ݐ௦௖௔௡_௖௣௨,	 the benefit of using a faster CPU is not a
scalable solution as we already discussed in Section 1.

4.3 Hardware Acceleration
To resolve the aforementioned performance bottleneck, we
consider dedicated hardware logic for computing as alternative to
the CPU as shown in Figure 3. The hardware logic is placed
inside an FMC and is composed of a main controller, registers,
compare logics and aggregation logics. The main controller is
responsible for examining the inbound data stream from the flash
memory bus to extract attributes of records to scan and sending
them to the compare logics. The registers contain the required
information such as matching conditions and values. Whenever
any attribute for scan is found from the incoming data stream, a
proper filtering condition is applied by the compare logic. At the
same time, the predicate of the filtering result is evaluated.

On detecting the end of each record, the accumulated predicate
evaluation is used to determine whether the current record is
forwarded to the DRAM or not. Also, it triggers the update of the
aggregate value if necessary. In this way, there is no need for the

CPU to directly intervene data streams, i.e., zero CPU time.
Consequently, the hardware ISP is capable of performing the scan
operation on-the-fly without degrading the bandwidth of the
inbound data stream. Note that each FMC has its own hardware
logic for scan, enabling FMC-wide parallel computing for high
processing rates.

Controller
- Incoming data

parsing
- DMA control

(condition, value)1
(condition, value)2

…
(condition, value)n

(condition, value)3 Compare logic

extracted
attribute

Inbound data
from flash chips

End of
record

Comparison
result

Aggregation
logic

aggregation
result

Outbound data
to DRAM

Flash Memory Controller

NAND Flash chipsWrite result

Figure 3: FMC architecture for the hardware ISP.

As a consequence, two terms ݐிெ஼→஽ோ஺ெ	 and ݐ஽ோ஺ெ→ு௢௦௧ are the
main contributors to the execution time of the scan operation with
the hardware ISP. The amount of data that are written to the
DRAM can be reduced if FMCs discard unmatched records.
Hence, ݐிெ஼→஽ோ஺ெ in Equation (2) is replaced with
ிெ஼→஽ோ஺ெݐ
ௌ 	for the hardware ISP, which is:

 _ _max ,S
FMC DRAM flash read DRAM writet t t   (7)

Also, ݐ௦௖௔௡ with the hardware ISP is modified considering the
zero CPU time, then

Srec rec rec rec
scan FMC DRAM DRAM Host

ch

N L N L
t t t

P N P


 

  
 


 (8)

For workloads that produce a small value for ߙ, which is the case
in our experiment, the performance of the hardware ISP is bound
to that of the flash chip array. This means that the proposed ISP is
able to maximally exploit the internal bandwidth of an SSD.

4.4 In-Host Processing
The derivation of the performance model for IHP (in-host
processing) can be simply formulated. Let us denote by ݐூு௉_௦௖௔௡
time to perform the scan operation. Then

_

_ _ _

rec rec rec rec
IHP scan FMC DRAM DRAM Host

ch

rec IHP scan rec cpu

N L N L
t t t

P N P

N t

 

 
 


 

 (9)

where ݐூு௉_௦௖௔௡_௥௘௖_௖௣௨ is the time for a host CPU to scan a record
on average. Note that ݐூு௉_௦௖௔௡ is independent of the scan
selectivity, meaning all records are transferred to the host.

5. Evaluation
5.1 Setup
In this section, we evaluate the performance of ISP in comparison
with IHP for the scan operation. We consider a variety of
architectures configured by the parameters in Table 1. For other
parameters listed in Table 2, we obtain realistic values from
profiling experiments that employ two platforms: a Linux
workstation with an Intel Xeon processor (2.26 GHz) and 4 GB
main memory (for host CPU time and selectivity) and a
commercial simulator of a 200 MHz ARM9 processor [33] (for
embedded CPU timings). The purpose of the profiling was to

measure the execution times devoted purely to computing of the
target database operation itself using different processors.

To measure the CPU execution time, we used Q6 in the TPC-H
benchmark [34] as shown in Figure 4. The input table size was
chosen carefully to ensure that the table stays in the main memory
of the workstation throughout the execution and no unintended
disk I/Os occur. To do so, the table was generated with a scale
factor of 1.0. We used the same set of conditions in the ARM
simulation environment. Using this method, we were able to
extract pure CPU times devoted to scanning a record without disk
access overhead.

Table 1: Configurable parameters for the performance model

Category Description or parameter Value(s)

NAND
Flash

Nch 8, 16
Nway 8

tR (us) 50
NAND interface speed (Mbps) 100, 200, 400

P (bytes) 8192
DRAM DDR2 clock frequency (MHz) 666, 1333

Host
Interface

Bandwidth of host interface (Gbps) 3, 6, 64

Embedded
CPU

Clock frequencies of processor/bus (MHz) 200/100

Table 2: Measured numbers for the performance model

Category Description or parameter Value

Embedded CPU
tcomp (cycles) 24
tresult (cycles) 403

Host CPU tIHP_scan_cpu (us) 0.0142
Selectivity scan selectivity, 0.013 ߙ

SELECT
sum (l_extendedprice * l_discount)

FROM
lineitem

WHERE
l_shipdate >= ‘1994-01-01’
and l_shipdate < 1995-01-01
and l_discount < 0.07
and l_discount > 0.05
and l_quantity < 24;

Figure 4: Query used for profiling.

5.2 Results of Performance Evaluation
5.2.1 Accuracy of the performance model
In the first set of experiments, we validate the accuracy of the
proposed performance model of the ISP. To produce reference
data, we built a separate, realistic simulation model of the ISP-
enabled SSD controller. Then simulation was carried out on a
commercial tool, Carbon SoC Designer [35], which is widely used
in industry for cycle-accurate simulation of SoC architectures.
Note that since the simulation speed is quite slow, it took about
5.6 hours to simulate just one second of the hardware ISP
execution. This implies that it is not appropriate to apply this
time-consuming simulation to all architecture candidates.

We configured a target architecture with a 200 MHz ARM
processor and a 8-channel and 8-way of 100 Mbps flash array.
The results of the comparison are shown in Table 3. The
estimation error is 6.5% at most, implying that the analytic model
accurately predicts the performance of ISP. The performance

prediction of the hardware-ISP is relatively more accurate than
that of the baseline-ISP because dedicated hardware blocks
behave more deterministically than an embedded CPU.

Table 3: Accuracy of the analytic ISP model of scan operation
compared with cycle-accurate simulation

Architecture Model (cycles) Simulation (cycles) Error (%)
Baseline-ISP 297282 317446 6.4 %
Hardware-ISP 16827 16984 0.9 %

5.2.2 Throughput comparison
Next, we investigate the effects of the configuration of NAND
flash arrays on the scan throughput to see how ISP and IHP scale
according to the variation in the number of flash channels and the
speed of NAND flash chips while the number of ways, i.e.,
number of FMCs, is fixed to 8. For comparison, we consider IHP,
baseline ISP, and hardware ISP. As shown in Figure 5, each of
them is prefixed by IHP-, cpu-, and hw- and followed by the
number of channels. For example, hardware ISP with 8 NAND
channels is ‘hw-ch8’. We assume that the DRAM operates at 667
MHz and the host interface is SATA 3 Gbps. The values of the
parameters used in the performance model follow Table 2 unless
otherwise stated.

Throughput (# of hash table searches/s)

NAND flash interface speed (Mbps)

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

3.0E+07

3.5E+07

100 MHz 200 MHz 400 MHz

IHP-ch8

IHP-ch16

cpu-ch8

cpu-ch16

hw-ch8

hw-ch16

Figure 5: Throughput comparison of ISP and IHP varying the
speed of NAND flash interface and the number of channels for
scan operation.

The results are depicted in Figure 5. We observe that the
throughput of hardware ISP scales linearly with the NAND flash
speed while the baseline ISP and IHP remain virtually unchanged.
In case of IHP, the host interface appears to be the performance
bottleneck. Although IHP needs to transmit the entire table to the
host, the bandwidth of the host interface (3 Gbps or 375 MB/s) is
lower than that of DRAM (2.66 GB/s). In addition, the sustainable
bandwidth for reading the flash array is larger than that of the host
interface (3 Gbps) even with the slowest configuration of the flash
array, i.e., 100 MHz NAND interface and 8 channels. Even the
bandwidth of the next generation interface, SATA with 6 Gbps, is
also easily saturated with a 16-channel architecture. This implies
that IHP cannot cope with the growth of flash memory bandwidth
efficiently while the hardware ISP fully exploits the rich internal
bandwidth thanks to the dedicated per-FMC hardware logic.
Consequently, the performance gap between the hardware ISP and
others grows as the internal bandwidth of the storage becomes
higher. In our case, the throughput of the hardware IHP is up to
13.9 times higher over both the baseline ISP and IHP.

On the other hand, the poor performance of the baseline ISP is
mainly due to the low computing power of a single embedded
CPU. According to the execution time profile of the embedded
CPU, it requires about 29 bus cycles to process a 128-byte record
on average, yielding a data processing rate of 441 MB/s. However,
since inbound data stream from flash memory is at least 743 MB/s,
the embedded CPU cannot satisfy the computation requirement.
This observation shows that the performance bottleneck of ISP on
an SSD is not storage media bandwidth but other components,
such as an embedded CPU or host interface, along with the data
path unlike hard disk-based database machines [14] where the
performance bottleneck is the storage media itself.

5.2.3 Structural breakdown of latency
It is worth decomposing the target operation’s execution into
distinct parts to provide means of reasoning the performance
variations according to the processing methods. For this purpose,
latency of the scan operation is divided into four components: (1)
transfers between DRAM and host interface, (2) transfers between
DRAM and FMC, (3) computation with the embedded CPU, and
(4) computation with the host CPU as shown in Figure 6(a).

Latency (usec)

8-Channel 16-Channel

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

4500.0

5000.0

IHP cpu hw IHP cpu hw IHP cpu hw IHP cpu hw IHP cpu hw IHP cpu hw

100 MHz

NAND

200 MHz

NAND

400 MHz NAND 100 MHz

NAND

200 MHz

NAND

400 MHz

NAND

DRAM <->

host

DRAM <->

FMC

embedded

processor

host

processor

Figure 6: Breakdown of execution times for the proposed ISP
and the IHP varying the speed of NAND flash interface and
the number of channels for scan.

For IHP, we observe that a major portion in the overall execution
time is devoted to data transfer via the host interface. As stated
previously, even the slowest flash configuration (8 channels with
100 Mbps flash) offers greater bandwidth than the host interface.
Thus, increasing the bandwidth of the flash array does not benefit
IHP. In the baseline ISP, a similar observation is found except that
the embedded CPU is the new bottleneck (not the host interface).

In the baseline ISP, the entire table should be loaded to the
DRAM since the embedded CPU performs the scan operation.
Therefore according to the increase in the FMC bandwidth, the
DRAM may not be able to accept data from the FMC as the full
speed. For example, the sustainable bandwidth of 16 channels
with 200 MHz flash chips amounts to 2,776 MB/s while the peak
bandwidth of DRAM at 667 MHz is only 2,664 MB/s. Moreover,
the actual DRAM bandwidth available to FMC-DRAM DMA
may be significantly less than the peak bandwidth because other
data transfers, DRAM-HostIF DMA for example, can use DRAM
simultaneously. This explains why the time for DRAM-FMC
transfer remains the same in the underlying 16 channels with both
200 Mbps and 400 Mbps flash chips. The hardware ISP, however,
does not suffer from the aforementioned DRAM bandwidth
limitation since FMCs discard filtered data without sending them
to DRAM. The more records are filtered out in the FMCs, the
more the bandwidth of the flash array is exploited. Also since the

scan selectivity is quite small (0.013), the data transfer through the
host interface is small with the ISP.

To summarize, ISP provides the means to exploit the internal
bandwidth of flash array maximally. The dedicated hardware
logic at each FMC performs on-the-fly computation without
hindering the flow of inbound data from the flash array,
efficiently offloading the burden of computation and entailed
communication from the host. As a result, the performance of the
scan operation follows the raw performance of the flash array
itself with the hardware ISP.

5.2.4 Effect of selectivity and the host interface
The previous experiments are based on the fixed low selectivity.
Therefore, data transfer via the host interface has limited impact
on the performance of ISP. One may guess that if the selectivity
approaches 1, then the host interface can lower the performance of
ISP. To investigate the impact of the selectivity and the host
interface speed, we carried out another set of experiments and
show the results in Figure 7. We consider three kinds of host
interface speeds (3, 6, and 64 Gbps) to represent the existing host
interfaces, SATA rev. 2.0 (3 Gbps), SATA rev. 3.0 (6 Gbps) and
PCI-e x16 (64 Gbps, 8 GB/s), respectively. To ensure that the
bandwidth of the host interface is fully utilized, we set the
configuration of DRAM and flash array to the highest
performance; we use DRAM of 1,333 MHz and 16 channels with
400 Mbps flash chips.

Throughput (# of scanned records/s)

Scan selectivity

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

3.0E+07

3.5E+07

4.0E+07

0.01 0.05 0.1 0.2 0.4 0.6 0.8 1

IHP-SATA2

IHP-SATA3

IHP-PCIe

cpu-isp-SATA2

cpu-isp-SATA3

cpu-isp-PCIe

hw-isp-SATA2

hw-isp-SATA3

hw-isp-PCIe

Figure 7: Performance of the ISP according to the variation of
the selectivity and the host interface.

Table 4: Ideal performance of architecture components in
terms of data processing rate (unit: number of processed
records per second)

Component Data processing rate
Host CPU 7.06 x 107

Embedded CPU 2.34 x 105
Hardware-ISP 3.83 x 107

Host interface SATA 2.0 2.93 x 106
Host interface SATA 3.0 5.86 x 106
Host interface PCI-e 6.25 x 107

The result in Figure 7 shows that the performance of the hardware
ISP converges to IHP as the selectivity approaches 1 over all host
interface types. The performance gap of IHP and hardware ISP
decreases as the DRAM-to-host interface transfer becomes
dominant as the selectivity on the hardware ISP grows. To explain
this, we provide the ideal data processing rate of each architecture
component in Table 4. Note that the data processing rate may
differ from the data bandwidth. For scan, computing capability of
the host processor amounts to 70.6 M records per second while

the hardware ISP operates at 38.3 M records per second. In this
situation, the DRAM-to-host interface transfer is a performance
bottleneck when the host interface is SATA both in IHP and the
hardware ISP. On the other hand, with the PCI-e interface, flash
memory bandwidth turns out to be the performance bottleneck.
However, the storage media bandwidth of an SSD will scale
easily to the host interface speed by growing NAND channels or
NAND interface speed. Further since the proposed hardware-ISP
can fully exploit the storage media bandwidth in a scalable way,
the growth of the host interface speed would not confine the
applicability of the ISP.

5.3 Energy Consumption Evaluation
Energy reduction is another key benefit of ISP. In a conventional
system, searching for a specific value that is associated with a
given key requires that all data be transferred to the host CPU, via
various system components including the host interface, main
memory (DRAM), and L1/L2 cache memories. The data is finally
loaded into a CPU register before being compared with the search
key. With a match, the search operation is done. Otherwise, the
data is discarded after uselessly spending energy and time. Note
that this inefficiency can be amplified in the network-prevalent
data center environment because the data should travel through
even more system components and cables. On the contrary, the
proposed ISP performs the compare operations inside the SSD
through simple hardware logics in FMCs. As a result, most data
that do not match the key are filtered early at the minimum
distance from the storage medium.

Table 5: Comparison of normalized energy consumption.

Processing method Energy consumption
ISP (modified firmware) 0.142

IHP (conventional) 1.000

To estimate the energy reduction benefit of the ISP approach, we
measured the energy consumption of a string search workload on
a real platform. The benchmark is executed on a laptop PC with a
2 GHz Intel Centrino Core 2 processor, 1 GB of memory and a
Samsung 64 GB SSD. Since an actual implementation of the
hardware ISP is not yet available, we modified the SSD firmware
to emulate the hardware ISP behavior. Assuming that there are
hardware comparison logic modules, we randomly selected data
within the SSD and returned them in response to a specific
command of the host. As the hardware comparison logic is simple,
and incurs negligible latency and power overhead, this emulation
method gives us a reasonable estimate of the potential energy gain
of ISP. The results are normalized to that of IHP and shown in
Table 5. Energy consumption of ISP is just 14% of the IHP
scheme.

6. CONCLUSIONS
We presented the idea of “in-storage processing” (ISP) for data-
intensive applications on flash-based SSDs. ISP addresses the low
utilization of available data bandwidth and computation power in
SSDs and opens up new exciting opportunities to increase the
performance and energy efficiency of data-intensive workloads.
The main idea of ISP is to move data-intensive processing to
inside flash SSDs, close to the data source (flash memory chips)
and to send the (reduced) results of the processing to the host.
This allows us to fully exploit the anticipated high raw flash
memory bandwidth and to reduce the amount of upward data
transfer through the host interface. The special-purpose computing
module deployed in the SSD controller is a key enabler of

practical ISP. We showed in this paper that the hardware-based
ISP approach realizes significant performance improvement for
the key database operation, scan, compared with the conventional
host processing approach. Moreover, the hardware-based ISP
consumes much less energy at negligible cost overheads.

As large data-intensive applications are popular and their demands
for data processing grow exponentially, the current computing
paradigm of bringing data to host CPU for computation will
encounter the unprecedented “bandwidth crisis” along the path
from storage, network, DRAM to CPU. Unfortunately, the
contemporary solution with the simple map-reduce programing
paradigm on massively large numbers of commodity PC clusters
would be also sub-optimal because it also brings data to the host
CPU. A more fundamental solution is to bring the computation
close to data itself, and thus to remove the potential bandwidth
bottleneck. Fortunately, with the advent of the bandwidth
breakthrough in flash memory and the intrinsic parallelism inside
an SSD, it is the right time to revisit the concept of database
machines and active disks with the cost-effective SoC technology.
As we demonstrated in this paper, ISP can be a very promising
scale-out solution for the next generation data-intensive
computing paradigm in terms of performance, cost and power.

7. ACKNOWLEDGMENTS
This investigation was financially supported by Semiconductor
Industry Collaborative Project between Hanyang University and
Samsung Electronics Co. Ltd. This research was supported by
Basic Science Research Program through the National Research
Foundation of Korea(NRF) funded by the Ministry of Education,
Science and Technology(2010-0005982). This work was
supported by the National Research Foundation of Korea(NRF)
grant funded by the Korea government(MEST) (No. 2010-
0025649 and No. 2010-0026511).

8. REFERENCES
[1] Intel Corporation, Solid-State Drives in the Enterprise: A

Proof of Concept, Mar. 2009.
[2] Teradata Corporation, Teradata Extreme Performance

Alliance. Product Site. http://www.teradata.com/t/extreme-
performance-appliance.

[3] Oracle Corporation. Oracle Exadata White Paper. Jul. 2010.
[4] Objective Analysis, Solid State Drives in the Enterprise,

2008.
[5] B. Head. Data doubles daily a decade hence, ITWire, Mar.

2011. http://www.itwire.com/storage/45827-data-doubles-
daily-a-decade-hence.

[6] http://www.worldwidewebsize.com/.
[7] A. Pavlo, E. Paulson, A. Rasin, D. Abadi, D. DeWitt, S.

Madden, and M. Stonebraker. A Comparison of Approaches
to Large-Scale Data Analysis, SIGMOD, 2009.

[8] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D. Stott
Parker, Map-reduce-merge: simplified relational data
processing on large clusters, SIGMOD, 2007.

[9] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T.
Kaldewey, V. W. Lee, S. A. Brandt, and P. Dubey. FAST:
fast architecture sensitive tree search on modern CPUs and
GPUs, SIGMOD, 2010.

[10] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters, OSDI, 2004.

[11] Maya Gokhale. Hardware Technologies for High-
Performance Data-Intensive Computing, IEEE Computer vol.
41(4), 2008.

[12] S. Y. W. Su and G. J. Lipovski. CASSM: a cellular system
for very large data bases, VLDB, 1975.

[13] E. A. Ozkarahan, S. A Schuster, and K. C. Smith. RAP -
associative processor for database management, AFIPS, 1975.

[14] H. Boral and D. J. Dewitt. Database Machines: An Idea
whose time has passed?, IWDM, 1983.

[15] E. Riedel, C. Faloutsos, and G. Gibson, Active storage for
large-scale data mining and multimedia, VLDB, 1998.

[16] K. Keeton, D. Patterson, and Jm Hellestein. A case for
intelligent disks, SiGMOD record, 1998.

[17] E. Riedel, C. Faloutsos, and D. Nagle. Active Disk
Architecture for Databases. Technical Report CMU-CS-00-
145, Carnegie Mellon University, Apr. 2000.

[18] E. Riedel, C. Faloutsos, G. A. Gibson, D. Nagle. Active
Disks for Large-Scale Data Processing. IEEE Computer, vol.
34(6), 2001.

[19] Samsung Electronics Inc., Samsung solid state drive basics.
http://www.samsungssd.com/meetssd/overview, 2010.

[20] M. Sivathanu, L. Bairavasundaram, A. Arpaci-Dusseau, and
R. Arpaci-Desseau. Database-Aware Semantically-Smart
Storage, FAST05.

[21] R. Mueller and J. Teubner. FPGA: what's in it for a database?.
SIGMOD, 2009.

[22] R. Mueller and J. Teubner, and Gustavo Alonso, Data
Processing on FPGAs, PVLDB, 2009.

[23] Netezza Corporation. The Netezza Data Appliance
Architecture: A Platform for High Performance Data
Warehousing and Analytics White Paper. 2010.

[24] B. Gedik, R. R. Bordawekar, and P. S. Yu. CellSort: High
Performance Sorting on the Cell Processor, VLDB, 2007.

[25] B. Gedik, P. S. Yu, and R. Bordawekar. Executing Stream
Joins on the Cell Processor, VLDB, 2007.

[26] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha.
GPUTeraSort: High Performance Graphics Co-processor
Sorting for Large Database Management, SIGMOD, 2006.

[27] B. He, K. Yang, R. Fang, M. Lu, N. K. Govindaraju, Q. Luo,
and P. V. Sander. Relational Joins on Graphics Processors,
SIGMOD, 2008.

[28] http://www.samsung.com/global/business/semiconductor/pro
ducts/flash/Products_Toggle_DDR_NANDFlash.html.

[29] Samsung Electronics Co., K9XXG08UXM flash memory
data sheet, 2007.

[30] Y. J. Seong et. al. Hydra: A block-mapped parallel flash
memory solid-state disk architecture. IEEE Trans. Computers
vol.59(7), 2010.

[31] J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee. A Superblock-Based
Flash Translation Layer for NAND Flash Memory. EMSOFT,
2006.

[32] S.-K. Won, S.-H. Ha, and E.-Y. Chung. Fast Performance
Analysis of NAND Flash-Based Storage Device. IET
Electronics Letters, vol 45(24), 2009.

[33] ARM Ltd., RealView ARMulator.
http://www.arm.com/products/DevTools/RealViewDevSuite.
html.

[34] Transaction Processing Performance Council.
http://www.tpc.org/.

[35] Carbon Design Systems, Inc. SoC Designer Plus,
http://carbondesignsystems.com/SocDesignerPlus.aspx.

