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ABSTRACT 
Today, an SSD (Solid State Drive) is essentially a block device 
attached to a legacy host interface. As a result, the system I/O bus 
remains a bottleneck, and the abundant flash memory bandwidth 
as well as the computing capabilities inside SSD is largely 
untapped. In this paper, we motivate an efficient in-storage 
computing approach where (part of) data-intensive processing is 
moved from the host CPU to inside flash SSDs, close to the data 
source itself (“in-storage processing”). Especially, we focus on 
accelerating a key database operation, scan. To realize the idea in 
a cost-effective manner, we deploy special-purpose computing 
modules using the System-on-Chip technology. While data from 
flash memory are transferred, a target database operation is 
applied to the data stream on the fly without any delay. This 
reduces the amount of data to transfer to the host drastically, and 
in turn, ensures all components along the data path in an SSD are 
utilized in a balanced way. Our experimental results show that in-
storage processing outperforms conventional CPU based 
processing by over 13 times for scan operation. It also turns out 
that in-storage processing can offer sizable energy savings of up 
to 7×. This drastic performance improvement is mainly 
attributable to the parallelism inside single flash SSD, while the 
similar existing hard disk based approaches have not been such 
successful because of the limited I/O bandwidth provided by 
conventional hard disk. 

1. INTRODUCTION 
Recently, there is a substantial influx of NAND flash based Solid 
State Drives (SSDs) in the enterprise storage market [1]. For 
example, large-scale storage appliances like Teradata’s Extreme 
Performance Appliance [2] and Oracle’s Exadata [3] harness 
SSDs to realize very high I/O operations per second (IOPS). 
Moreover, there are a host of positive forecasts for SSDs in the 
enterprise market [4]. 

Most prior developments have focused on the potential of flash 
SSD as fast and cost-effective hard disk (in terms of IOPS/$) with 

the legacy block interface. Taking into account the impressive 
performance and other advantages of flash SSD, this approach is 
very practical and will remain mainstream for a while. However, 
we argue that this conventional usage model of SSD fails to fully 
exploit the performance improvement opportunities offered by 
continued semiconductor technology advances. Notably, the 
aggregate raw bandwidth of flash memory devices in SSDs has 
already exceeded the peak bandwidth of most existing legacy 
interfaces. Furthermore, future SSD controllers are expected to 
have high computing power by necessity, as they integrate parallel 
flash interfaces, large high-speed memory, and more compute 
cores and logic. Sticking to the legacy block interface implies, 
unfortunately, that the abundant flash memory bandwidth and the 
computing capabilities inside SSD will be largely untapped. 

Meanwhile, new digital data are generated at astounding rates. 
Digital information stored in corporations, on the public Internet 
and on home computers is doubling every month [5]. The size of 
the web pages indexed by Google was roughly 20 Billion in 2009 
and is climbing to 30 to 40 Billion as of March 2011 [6]. The 
enterprise systems domain is no exception and petabyte databases 
are realistic (e.g., eBay’s 2.4 PB relational data [7]). Large-scale 
data analysis has become common and will be increasingly 
important for enterprises. In order to efficiently warehouse and 
analyze data at such scales, a shared-nothing, massive parallel 
processing storage tier of many storage servers is common [8]. 

Unfortunately, the performance of key data-intensive applications 
is and will be severely limited by the available system bandwidth 
(through I/O, network, main memory and CPU memory hierarchy) 
and low data locality [9][10][11]. In large data-intensive 
applications like TPC-H and Map-Reduce, the dominant 
computations on data are relatively simple scan and filtering, 
aggregation, sorting and join; data sets flow from the storage (to 
network) to all memory hierarchy levels in the host, only to be 
touched by the CPU briefly. Bandwidth mismatch along the data 
access path results in performance loss and moving around the 
massive data consumes sizable energy. This unwarranted 
inefficiency, of both performance and energy, remains a serious 
roadblock to database systems to scale out. 

In order to significantly improve the efficiency of data-intensive 
computing, this paper proposes and explores the idea of 
accelerating database operations for data warehouse workload by 
moving all or portions of data processing to inside flash SSDs, as 
close as to the data source itself (i.e., flash memory chips). We 
refer to this approach with a term “in-storage processing” (ISP in 
short). To motivate this approach, this paper will focus 
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specifically on table scan, one of the key access methods in any 
database system. 

The contributions of this paper can be summarized as follows. 
First, using the state-of-the-art CPU, DRAM and flash memory 
specification, we investigate which hardware component becomes 
a performance bottleneck when we execute a TPC-H query 
processing on modern flash SSDs. Second, we explore the design 
space to obtain appropriate SSD architectures for the scan 
operation. Third, we formulate and validate models that explain 
the performance differences between a conventional host CPU 
based processing, an ISP using CPU embedded inside flash SSD, 
and an ISP using dedicated SoC hardware logics on flash memory 
controller. Our results show that both embedded CPU- and 
hardware-based ISPs outperform host processing by as much as 
13× for scan. The ISP approach is promising also in terms of 
energy efficiency; our results show that measured energy saving is 
large (as much as 7×) with hardware-based ISP. 

In the remainder of this paper, we will first discuss prior related 
work in Section 2. Section 3 will describe important details of 
SSD’s hardware architecture. Section 4 gives the proposed ISP 
framework on an intelligent SSD architecture and formulates its 
performance models. We map a key operation, scan, to the ISP 
framework. Detailed performance evaluation of the ISP 
framework is given in Section 5, and finally, Section 6 concludes. 

2. RELATED WORK 
The idea of database machines in 1970s and 1980s was shown to 
have the potential of achieving great performance improvements 
for simple operations (such as “scan”) with processor per head, 
track, or disk [1][12][13]. As summarized in [14], however, 
database machines failed to be commercially successful for 
reasons: First, most database machines employed special-purpose 
hardware (such as associative disks and magnetic bubble memory), 
but the performance gains were not enough to justify the 
additional cost and design time. Second, improvements in the 
host-side processor architecture were much faster than disk 
bandwidth, leading to the underutilization of the special-purpose 
hardware. Finally, there was little performance gain for complex 
operations like join. 

In late 1990s, when the disk array became popular and the disk 
controller was equipped with low-cost general purpose CPU and 
on-board DRAM, some researchers explored the concept of active 
or intelligent disks that execute database operators inside the 
storage controller [15][16]. They aimed at offloading the host 
CPU with the excess computing power of the embedded CPU in 
disk drives and reducing the data transfer between the host and the 
storage. They suggested in-storage processing of primitive 
operators like scan, selection, aggregation, project, sorting and 
join [17][18]. However, these approaches didn’t take off due to: 
limited storage interface, overheads of changing database software 
[16], the lack of large data-intensive killer applications and the 
absence of vendors who drive changes actively. In fact, while hard 
disks dominate the storage market, there was no compelling 
technical and commercial reason to drive changes to the storage 
interface and the DBMS software stack. 

However, we do not believe that the concept of active disk has 
failed. In fact, it has morphed into different forms. Recently, for 
example, Teradata’s Extreme Performance Appliance [2] and 
Oracle’s Exadata [3] have started to put complex processing into 
their storage servers. In particular, Exadata can execute SQL 
projection, restriction and simple join filtering. They seem to have 

developed new proprietary storage interface between the host 
machine and the storage servers and changed its DBMS software 
stack to leverage the processing power inside storage. 
Consequently we anticipate that the data filtering effect of ISP (as 
suggested by active disks) will be of increasing significance as the 
aggregate storage bandwidth grows, clearly evidenced with the 
introduction of SSDs. 

Our work shares the same spirit with these efforts and strives to 
develop more intelligent storage devices. We focus specifically on 
flash SSDs. As we will discuss further, we identify that an 
embedded CPU-based ISP may not be the most desirable in flash 
SSDs, and in turn, suggest a hardware-assisted ISP. 

There is a fundamental difference among our approach, the 
database machine approach, and the active disk work approach. 
The concept of the active disk was mainly motivated by the 
superfluous computing power inside individual disks. In a similar 
vein, as Boral and DeWitt concluded in their retrospect paper for 
database machines [14], the limiting factor was the I/O bandwidth 
of storage media (i.e., disks), not the embedded CPU’s processing 
power or the DRAM bandwidth. Therefore, the existing “CPU-
based ISP” with hard disks was I/O bound. In contrast, the 
proposed ISP with SSD is no longer I/O bound. Instead, the CPU 
processing power and the DRAM bandwidth inside flash SSD 
become new bottlenecks. There are two reasons as following. 

First, the internal I/O bandwidth of flash SSDs can easily scale by 
adopting multi-way interleaving over multiple NAND flash chips 
on a shared I/O bus using multiple chip enable signals [19]. 
Furthermore, multi-channel interleaving is used with multiple 
independent flash controllers. The multi- way and multi-channel 
interleaving of NAND flash memory chips have been deployed as 
main techniques to significantly improve not only sequential read 
and write performance but also random read and write 
performance. 

Second, new flash memory chips themselves come with much 
improved data bandwidth; NAND interface has evolved from 40 
Mbps single data rate to 400 Mbps double data rate [20]. 
Therefore, assuming an SSD with 16 channels where each channel 
connects to 400 Mbps 8-bit NAND flash memory, the aggregated 
raw bandwidth amounts to as high as 6.4 GB/s! This raw 
bandwidth simply surpasses the computing power of 
contemporary embedded CPUs like ARM9 processor, as well as 
the bandwidth of DRAM and system bus bandwidth. As a 
consequence, embedded CPU- based ISP inside a flash SSD 
would be CPU-bound and data processing cannot proceed at the 
maximum speed of the storage media bandwidth. 

Beside ISP, there have been a plenty of works that are focused on 
acceleration of database operations with the aid of external 
special-purpose or commodity hardware. In [21] and [22], the 
authors presented an FPGA-based approach, where an FPGA is 
attached to the host interface of a conventional hard disk. In their 
approach, data from the disk are fed into the FPGA for 
preprocessing as necessary, offloading computation burdens of the 
host processor. Commercial realization of this idea is found in 
[23]. In another approach, acceleration of primitive database 
operations with the IBM Cell processor has been studied [24][25]. 
Lastly, the use of general-purpose GPUs to speed up database 
operations has been examined [9][26][27]. The main ideas of 
these studies are similar to ours in that the performance of 
primitive database operations can be improved with the aids of 
external, non-host computing resources. However, the major 



difference is that we carry out the acceleration inside a flash SSD 
directly. It is the most scalable solution in a cost-effective way to 
satisfy the huge computing performance requirements of large-
scale data processing applications with tens or hundreds of disk 
drives. 

3. BACKGROUND: FLASH SOLID STATE 
DRIVES 
Figure 1 illustrates the general architecture of an SSD with its 
major components: a host interface controller, a NAND flash 
memory array, flash memory controllers, an embedded CPU, and 
a DRAM. 

Host Interface Controller: The function of the host interface 
controller is to support a specific bus interface protocol such as 
SATA, SAS, and PCI-e. The host interface bandwidth has steadily 
increased with the introduction of new standards, from P-ATA to 
SATA in desktop systems and from SCSI to SAS in enterprise 
applications. The bandwidth of the SATA interface ranges from 3 
Gbps to 6 Gbps today. Recently, PCI-e has emerged as a new 
interface for storage due to its scalable bandwidth and relatively 
short latency compared to other existing storage interfaces. The 
PCI-e interface has additional benefits to SSD because host 
resources can be utilized for memory and computing-intensive 
parts of flash management such as address mapping and wear 
leveling. 

ECC, DMA
8/16 channel, 8way

NAND I/F:
40MB/s 400MB/s

User buffer (Read/Write)
Meta data (e.g.,Mapping table)

FW execution
(host cmd, mapping)

SATA 3G(250MB/s)
SAS 6G (1GB/s)

PCIe x16 (6GB/s)

Embedded

CPUs

 
Figure 1: The general architecture of an SSD. 

NAND Flash memory: An array of NAND flash memory is used 
as the permanent storage medium for user data. A flash memory 
consists of multiple blocks, each of which has multiple pages. A 
block is a unit of erase operation while a page is associated with 
read/write operations. NAND flash interface has evolved from 40 
Mbps single data rate to 400 Mbps double data rate [28]. Unlike a 
hard drive, an SSD can achieve scalable performance in 
proportion to the number of NAND flash memory chips to be 
integrated. 

Flash Memory Controllers (FMC): FMCs are responsible for 
data transfer between DRAM and NAND flash memory using 
Direct Memory Access (DMA). They also guarantee data integrity 
based on Error Correction Code (ECC) like Reed-Solomon and 
BCH. As NAND flash memory is continuously shrunk, a stronger 
ECC capability is required. As a result, ECC logic has become a 
dominant part of an SSD controller chip in terms of cost and 
power consumption. An FMC also utilizes multi-way interleaving 
over multiple NAND flash chips on a shared I/O bus using 
multiple chip enable signals [29]. Moreover, multi-channel 

interleaving is used with independent channels and FMCs [30]. 
The multi-channel and multi-way interleaving of NAND flash 
chips have been deployed as main techniques to improve the 
performance of both sequential and random accesses. The FMC 
can be implemented as dedicated hardware for high performance 
and power efficiency or an application-specific instruction-set 
processor to support diverse NAND flash memory commands. 

Embedded CPU: The embedded CPU(s) together with SRAM 
provide the execution environment for running flash management 
firmware called Flash Translation Layer (FTL). FTL parses 
incoming host commands and translates associated logical block 
address (LBA) to physical address on NAND flash memory based 
on a mapping table [31]. Typically, a 32-bit RISC processor is 
used, which runs at 200 to 400 MHz. Depending on the 
performance requirement of a given application, multiple CPUs 
can be incorporated to handle multiple host requests (i.e., NCQ) 
and NAND flash management simultaneously. 

DRAM: DRAM is used to temporarily save user data and FTL 
metadata. Its size can range from tens to hundreds of MB 
depending on the target application. Because DRAM is the target 
of data transfers from both the host interface and FMCs, it is 
operated at a high clock frequency of 667 MHz or higher, which 
corresponds to the bandwidth of 2.6 GB/s or more (32-bit bus). 

4. IN-STORAGE PROCESSING OF SCAN 
OPERATION 
In this section, we present the details of in-storage processing to 
perform primitive database operations inside SSDs. We first 
explain how to carry out ISP in a baseline SSD controller, and 
derive an analytic model to capture the performance 
characteristics of ISP according to the variation of architecture 
parameters. We then propose a cost-efficient solution with special 
computing modules that are dedicated for computing-intensive 
functions in place of an embedded CPU in an SSD controller. 
Finally, we provide the performance model of a conventional in-
host processing for the purpose of comparison. 

CPU
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controller

DRAM

ⓐ
Flash 
transfer

ⓑ
FMCDRAM 
transfer

ⓒ
Computation

ⓓ
DRAM  Host interface
transfer

Host 
Interface

In-Host Processing: ⓐ  ⓑ  ⓓ
In-Storage Processing: ⓐ  ⓑ  ⓒ ⓓ

Flash 
Memory
Controller

(FMC)

 
Figure 2: Data path in the baseline architecture. 

4.1 Preliminaries 
Figure 2 illustrates our baseline architecture, where an embedded 
CPU1 is the only computation resource. Therefore any data to be 
processed should be sent to DRAM, paying the cost of data 
transfer time. There are two types of DMA transfers in the 

                                                                 
1 The term ‘CPU’ indicates the embedded CPU inside an SSD controller. 

We use the term ‘host CPU’ to refer to the CPU of a host machine. 



baseline architecture. First one occurs between FMCs and the 
DRAM (FMC-DRAM DMA) while the other is the transfer 
between the DRAM and the host interface (DRAM-Host DMA). 

Both DMA operations are always invoked on any data request to 
an SSD. Thus, we first develop the performance model of the 
DMA operations that are basic building blocks of the analytic 
models for both ISP and in-host processing (IHP). 

FMC-DRAM DMA: We begin by defining some notations to 
describe an FMC and flash chips. ௖ܰ௛ is the number of FMCs in 
an SSD controller, i.e., the number of channels and ܰ௪௔௬ is the 
number of ways in a channel. We also define ܮ௣௔௚௘	to be the size 
of a single NAND flash page in bytes. Then, let ݐ௙௟௔௦௛_௥௘௔ௗ  be 
time to read P bytes from flash chips to the FMC ignoring cycles 
to issue an operation command. Similar to the derivation in [32], 

_flash read page R
page page way

P P
t t t

L L N

   
    

      
  (1) 

where ݐ௣௔௚௘  is the elapsed time to load a page from a flash 
memory bus after the busy phase for a page read, ݐோ . These 
parameters are easily obtained from vendor datasheet books. 

We also define ݐ஽ோ஺ெ_௥௘௔ௗ  and ݐ஽ோ஺ெ_௪௥௜௧௘  as time to read or 
write P bytes from/to the DRAM. When performing FMC-DRAM 
DMA, data transfers at both flash chips and DRAM are activated 
in a pipelined fashion to maximize transfer efficiency. As such, if 
we define ݐிெ஼→஽ோ஺ெ	 as time for FMC-to-DRAM transfer of P 
bytes, it is bound to a longer path between them. Therefore, 

 _ _max ,FMC DRAM flash read DRAM writet t t     (2) 

For brevity, the details of ݐ஽ோ஺ெ_௥௘௔ௗ  that require DRAM 
architecture specific parameters are omitted, but those parameters 
are statically determined once the amount of data transfer is given. 

DRAM-Host DMA: Next, we focus on time to transfer P bytes 
from DRAM to the host interface and denote it by ݐ஽ோ஺ெ→ு௢௦௧. 
Similarly we use ݐு௢௦௧→஽ோ஺ெ to indicate the transfer in the reverse 
direction. We also define additional parameters ݐு௢௦௧_௥௘௔ௗ	 and 
ு௢௦௧_௪௥௜௧௘ݐ  as time to read and write P bytes through the host 
interface, which corresponds to the host interface speed. Similar 
to FMC-DRAM DMA, DRAM-Host DMA is also assumed to 
work in a pipelined fashion. Therefore, 

 _ _max ,DRAM Host Host write DRAM readt t t     (3) 

 _ _max ,Host DRAM Host read DRAM writet t t     (4) 

4.2 Baseline Architecture 
In the scan operation, the ‘where’ clause of a SQL query is 
performed on each record, returning only the matching records to 
the host. ISP of the scan operation on top of the baseline 
architecture is straightforward as depicted in Figure 2. In the first 
step, a table to be processed is partially read from FMCs into 

DRAM using FMC-DRAM DMA (ⓐ and ⓑ in the figure). We 
assume that the table is evenly distributed over all NAND 
channels such that the table may be loaded at the maximum 

bandwidth the flash chip array offers. In the next step (ⓒ), the 
embedded CPU scans the partial table in the DRAM. At the same 
time, the matching records of the table are output to another 
location of the DRAM. If “aggregation” is required, the embedded 
CPU just updates the aggregated result instead. Finally, the result 

of the ISP is delivered to the host using DRAM-Host DMA (ⓓ) 
in response to the query. The procedure above is repeated until the 
entire table is examined. 

In order to derive the performance model of the ISP for scan, 
suppose that a table has ௥ܰ௘௖	records and the length of a record is 
fixed to ܮ௥௘௖  bytes long. We use ݐ௦௖௔௡_௖௣௨  to denote the 
computation time by the CPU to scan the entire table. Then, it is 

 _ _ _scan cpu rec scan comp scan resultt N t t       (5) 

where ߙ  is scan selectivity, ݐ௦௖௔௡_௖௢௠௣  is time for the CPU to 
execute the scan operation on a single record, and ݐ௦௖௔௡_௥௘௦௨௟௧ is 
the time to write a matched result, i.e., copy of the record or 
update of an aggregate value, to DRAM. The lower ߙ  is, the 
smaller the amount of data transfer to the host becomes. For 
example, ߙ  would be almost negligible if we perform Scan-
Aggregation since a single value will be sent to the host as a result. 
Note that ݐ௦௖௔௡_௖௢௠௣  and ݐ௦௖௔௡_௥௘௦௨௟௧  depend on the 
implementation of the ISP. Since the exact modeling of those 
parameters is non-trivial and beyond the scope of this paper, we 
resort to measurement results, as will be explained in Section 5.1.  

Then, let ݐ௦௖௔௡ be the execution time of the scan operation for the 
table. Since the operation is composed of the three sequential 
steps, FMC-DRAM DMA, computation by the CPU, and DRAM-
Host DMA, it is formulated as follows: 

_
rec rec rec rec

scan FMC DRAM scan cpu DRAM Host
ch

N L N L
t t t t

P N P


 

  
  


(6) 

Note that data delivered to the host depends on the scan selectivity. 
If we want to reduce ݐிெ஼→஽ோ஺ெ for better performance, we may 
widen the peak bandwidth of the flash chips by using more 
channels or faster flash chips as long as the DRAM bandwidth 
surpasses that of the flash chip array. Otherwise a faster DRAM is 
a proper solution, which also reduces ݐ஽ோ஺ெ→ு௢௦௧ . Even though 
 ஽ோ஺ெ→ு௢௦௧ may also be improved by a faster host interface, weݐ
assume the host interface and DRAM speed are fixed so that the 
variation of ݐிெ஼→஽ோ஺ெ depends on the configuration of the flash 
chip array only, and ݐ஽ோ஺ெ→ு௢௦௧ cannot be altered. 

Experimental results show that more than half the latency of the 
baseline ISP is occupied by the embedded CPU. However, to 
reduce ݐ௦௖௔௡_௖௣௨,	 the benefit of using a faster CPU is not a 
scalable solution as we already discussed in Section 1.  

4.3 Hardware Acceleration 
To resolve the aforementioned performance bottleneck, we 
consider dedicated hardware logic for computing as alternative to 
the CPU as shown in Figure 3. The hardware logic is placed 
inside an FMC and is composed of a main controller, registers, 
compare logics and aggregation logics. The main controller is 
responsible for examining the inbound data stream from the flash 
memory bus to extract attributes of records to scan and sending 
them to the compare logics. The registers contain the required 
information such as matching conditions and values. Whenever 
any attribute for scan is found from the incoming data stream, a 
proper filtering condition is applied by the compare logic. At the 
same time, the predicate of the filtering result is evaluated. 

On detecting the end of each record, the accumulated predicate 
evaluation is used to determine whether the current record is 
forwarded to the DRAM or not. Also, it triggers the update of the 
aggregate value if necessary. In this way, there is no need for the 



CPU to directly intervene data streams, i.e., zero CPU time. 
Consequently, the hardware ISP is capable of performing the scan 
operation on-the-fly without degrading the bandwidth of the 
inbound data stream. Note that each FMC has its own hardware 
logic for scan, enabling FMC-wide parallel computing for high 
processing rates. 

Controller
- Incoming data 

parsing
- DMA control

(condition, value)1
(condition, value)2

…
(condition, value)n

(condition, value)3 Compare logic

extracted 
attribute

Inbound data 
from flash chips

End of 
record

Comparison
result

Aggregation
logic

aggregation
result

Outbound data 
to DRAM

Flash Memory Controller

NAND Flash chipsWrite result

 
Figure 3: FMC architecture for the hardware ISP. 

As a consequence, two terms ݐிெ஼→஽ோ஺ெ	 and ݐ஽ோ஺ெ→ு௢௦௧ are the 
main contributors to the execution time of the scan operation with 
the hardware ISP. The amount of data that are written to the 
DRAM can be reduced if FMCs discard unmatched records. 
Hence, ݐிெ஼→஽ோ஺ெ  in Equation (2) is replaced with 
ிெ஼→஽ோ஺ெݐ
ௌ 	for the hardware ISP, which is: 

 _ _max ,S
FMC DRAM flash read DRAM writet t t     (7) 

Also, ݐ௦௖௔௡  with the hardware ISP is modified considering the 
zero CPU time, then 

Srec rec rec rec
scan FMC DRAM DRAM Host

ch

N L N L
t t t

P N P


 

  
 


 (8) 

For workloads that produce a small value for ߙ, which is the case 
in our experiment, the performance of the hardware ISP is bound 
to that of the flash chip array. This means that the proposed ISP is 
able to maximally exploit the internal bandwidth of an SSD. 

4.4 In-Host Processing 
The derivation of the performance model for IHP (in-host 
processing) can be simply formulated. Let us denote by ݐூு௉_௦௖௔௡ 
time to perform the scan operation. Then 

_

_ _ _          

rec rec rec rec
IHP scan FMC DRAM DRAM Host

ch

rec IHP scan rec cpu

N L N L
t t t

P N P

N t

 

 
 


 

 (9) 

where ݐூு௉_௦௖௔௡_௥௘௖_௖௣௨ is the time for a host CPU to scan a record 
on average. Note that ݐூு௉_௦௖௔௡  is independent of the scan 
selectivity, meaning all records are transferred to the host. 

5. Evaluation 
5.1 Setup 
In this section, we evaluate the performance of ISP in comparison 
with IHP for the scan operation. We consider a variety of 
architectures configured by the parameters in Table 1. For other 
parameters listed in Table 2, we obtain realistic values from 
profiling experiments that employ two platforms: a Linux 
workstation with an Intel Xeon processor (2.26 GHz) and 4 GB 
main memory (for host CPU time and selectivity) and a 
commercial simulator of a 200 MHz ARM9 processor [33] (for 
embedded CPU timings). The purpose of the profiling was to 

measure the execution times devoted purely to computing of the 
target database operation itself using different processors. 

To measure the CPU execution time, we used Q6 in the TPC-H 
benchmark [34] as shown in Figure 4. The input table size was 
chosen carefully to ensure that the table stays in the main memory 
of the workstation throughout the execution and no unintended 
disk I/Os occur. To do so, the table was generated with a scale 
factor of 1.0. We used the same set of conditions in the ARM 
simulation environment. Using this method, we were able to 
extract pure CPU times devoted to scanning a record without disk 
access overhead. 

Table 1: Configurable parameters for the performance model 

Category Description or parameter Value(s) 

NAND
Flash 

Nch 8, 16 
Nway 8 

tR (us) 50 
NAND interface speed (Mbps) 100, 200, 400

P (bytes) 8192 
DRAM DDR2 clock frequency  (MHz) 666, 1333 

Host 
Interface

Bandwidth of host interface (Gbps) 3, 6, 64 

Embedded 
CPU 

Clock frequencies of processor/bus (MHz) 200/100 

 

Table 2: Measured numbers for the performance model 

Category Description or parameter Value 

Embedded CPU
tcomp (cycles) 24 
tresult (cycles) 403 

Host CPU tIHP_scan_cpu (us) 0.0142 
Selectivity scan selectivity, 0.013 ߙ 

 

SELECT 
sum (l_extendedprice * l_discount) 

FROM
lineitem

WHERE
l_shipdate >= ‘1994-01-01’
and l_shipdate < 1995-01-01 
and l_discount < 0.07
and l_discount > 0.05
and l_quantity < 24;

 
Figure 4: Query used for profiling. 

5.2 Results of Performance Evaluation 
5.2.1 Accuracy of the performance model 
In the first set of experiments, we validate the accuracy of the 
proposed performance model of the ISP. To produce reference 
data, we built a separate, realistic simulation model of the ISP-
enabled SSD controller. Then simulation was carried out on a 
commercial tool, Carbon SoC Designer [35], which is widely used 
in industry for cycle-accurate simulation of SoC architectures. 
Note that since the simulation speed is quite slow, it took about 
5.6 hours to simulate just one second of the hardware ISP 
execution. This implies that it is not appropriate to apply this 
time-consuming simulation to all architecture candidates.  

We configured a target architecture with a 200 MHz ARM 
processor and a 8-channel and 8-way of 100 Mbps flash array. 
The results of the comparison are shown in Table 3. The 
estimation error is 6.5% at most, implying that the analytic model 
accurately predicts the performance of ISP. The performance 



prediction of the hardware-ISP is relatively more accurate than 
that of the baseline-ISP because dedicated hardware blocks 
behave more deterministically than an embedded CPU.  

Table 3: Accuracy of the analytic ISP model of scan operation 
compared with cycle-accurate simulation 

Architecture Model (cycles) Simulation (cycles) Error (%)
Baseline-ISP 297282 317446 6.4 % 
Hardware-ISP 16827 16984 0.9 % 

 

5.2.2 Throughput comparison 
Next, we investigate the effects of the configuration of NAND 
flash arrays on the scan throughput to see how ISP and IHP scale 
according to the variation in the number of flash channels and the 
speed of NAND flash chips while the number of ways, i.e., 
number of FMCs, is fixed to 8. For comparison, we consider IHP, 
baseline ISP, and hardware ISP. As shown in Figure 5, each of 
them is prefixed by IHP-, cpu-, and hw- and followed by the 
number of channels. For example, hardware ISP with 8 NAND 
channels is ‘hw-ch8’. We assume that the DRAM operates at 667 
MHz and the host interface is SATA 3 Gbps. The values of the 
parameters used in the performance model follow Table 2 unless 
otherwise stated. 
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Figure 5: Throughput comparison of ISP and IHP varying the 
speed of NAND flash interface and the number of channels for 
scan operation. 

The results are depicted in Figure 5. We observe that the 
throughput of hardware ISP scales linearly with the NAND flash 
speed while the baseline ISP and IHP remain virtually unchanged. 
In case of IHP, the host interface appears to be the performance 
bottleneck. Although IHP needs to transmit the entire table to the 
host, the bandwidth of the host interface (3 Gbps or 375 MB/s) is 
lower than that of DRAM (2.66 GB/s). In addition, the sustainable 
bandwidth for reading the flash array is larger than that of the host 
interface (3 Gbps) even with the slowest configuration of the flash 
array, i.e., 100 MHz NAND interface and 8 channels. Even the 
bandwidth of the next generation interface, SATA with 6 Gbps, is 
also easily saturated with a 16-channel architecture. This implies 
that IHP cannot cope with the growth of flash memory bandwidth 
efficiently while the hardware ISP fully exploits the rich internal 
bandwidth thanks to the dedicated per-FMC hardware logic. 
Consequently, the performance gap between the hardware ISP and 
others grows as the internal bandwidth of the storage becomes 
higher. In our case, the throughput of the hardware IHP is up to 
13.9 times higher over both the baseline ISP and IHP. 

On the other hand, the poor performance of the baseline ISP is 
mainly due to the low computing power of a single embedded 
CPU. According to the execution time profile of the embedded 
CPU, it requires about 29 bus cycles to process a 128-byte record 
on average, yielding a data processing rate of 441 MB/s. However, 
since inbound data stream from flash memory is at least 743 MB/s, 
the embedded CPU cannot satisfy the computation requirement. 
This observation shows that the performance bottleneck of ISP on 
an SSD is not storage media bandwidth but other components, 
such as an embedded CPU or host interface, along with the data 
path unlike hard disk-based database machines [14] where the 
performance bottleneck is the storage media itself. 

5.2.3 Structural breakdown of latency 
It is worth decomposing the target operation’s execution into 
distinct parts to provide means of reasoning the performance 
variations according to the processing methods. For this purpose, 
latency of the scan operation is divided into four components: (1) 
transfers between DRAM and host interface, (2) transfers between 
DRAM and FMC, (3) computation with the embedded CPU, and 
(4) computation with the host CPU as shown in Figure 6(a). 
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Figure 6: Breakdown of execution times for the proposed ISP 
and the IHP varying the speed of NAND flash interface and 
the number of channels for scan. 

For IHP, we observe that a major portion in the overall execution 
time is devoted to data transfer via the host interface. As stated 
previously, even the slowest flash configuration (8 channels with 
100 Mbps flash) offers greater bandwidth than the host interface. 
Thus, increasing the bandwidth of the flash array does not benefit 
IHP. In the baseline ISP, a similar observation is found except that 
the embedded CPU is the new bottleneck (not the host interface). 

In the baseline ISP, the entire table should be loaded to the 
DRAM since the embedded CPU performs the scan operation. 
Therefore according to the increase in the FMC bandwidth, the 
DRAM may not be able to accept data from the FMC as the full 
speed. For example, the sustainable bandwidth of 16 channels 
with 200 MHz flash chips amounts to 2,776 MB/s while the peak 
bandwidth of DRAM at 667 MHz is only 2,664 MB/s. Moreover, 
the actual DRAM bandwidth available to FMC-DRAM DMA 
may be significantly less than the peak bandwidth because other 
data transfers, DRAM-HostIF DMA for example, can use DRAM 
simultaneously. This explains why the time for DRAM-FMC 
transfer remains the same in the underlying 16 channels with both 
200 Mbps and 400 Mbps flash chips. The hardware ISP, however, 
does not suffer from the aforementioned DRAM bandwidth 
limitation since FMCs discard filtered data without sending them 
to DRAM. The more records are filtered out in the FMCs, the 
more the bandwidth of the flash array is exploited. Also since the 



scan selectivity is quite small (0.013), the data transfer through the 
host interface is small with the ISP. 

To summarize, ISP provides the means to exploit the internal 
bandwidth of flash array maximally. The dedicated hardware 
logic at each FMC performs on-the-fly computation without 
hindering the flow of inbound data from the flash array, 
efficiently offloading the burden of computation and entailed 
communication from the host. As a result, the performance of the 
scan operation follows the raw performance of the flash array 
itself with the hardware ISP. 

5.2.4 Effect of selectivity and the host interface 
The previous experiments are based on the fixed low selectivity. 
Therefore, data transfer via the host interface has limited impact 
on the performance of ISP. One may guess that if the selectivity 
approaches 1, then the host interface can lower the performance of 
ISP. To investigate the impact of the selectivity and the host 
interface speed, we carried out another set of experiments and 
show the results in Figure 7. We consider three kinds of host 
interface speeds (3, 6, and 64 Gbps) to represent the existing host 
interfaces, SATA rev. 2.0 (3 Gbps), SATA rev. 3.0 (6 Gbps) and 
PCI-e x16 (64 Gbps, 8 GB/s), respectively. To ensure that the 
bandwidth of the host interface is fully utilized, we set the 
configuration of DRAM and flash array to the highest 
performance; we use DRAM of 1,333 MHz and 16 channels with 
400 Mbps flash chips. 
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Figure 7: Performance of the ISP according to the variation of 
the selectivity and the host interface. 

Table 4: Ideal performance of architecture components in 
terms of data processing rate (unit: number of processed 
records per second) 

Component Data processing rate 
Host CPU 7.06 x 107 

Embedded CPU 2.34 x 105 
Hardware-ISP 3.83 x 107 

Host interface SATA 2.0 2.93 x 106 
Host interface SATA 3.0 5.86 x 106 
Host interface PCI-e 6.25 x 107 

 

The result in Figure 7 shows that the performance of the hardware 
ISP converges to IHP as the selectivity approaches 1 over all host 
interface types. The performance gap of IHP and hardware ISP 
decreases as the DRAM-to-host interface transfer becomes 
dominant as the selectivity on the hardware ISP grows. To explain 
this, we provide the ideal data processing rate of each architecture 
component in Table 4. Note that the data processing rate may 
differ from the data bandwidth. For scan, computing capability of 
the host processor amounts to 70.6 M records per second while 

the hardware ISP operates at 38.3 M records per second. In this 
situation, the DRAM-to-host interface transfer is a performance 
bottleneck when the host interface is SATA both in IHP and the 
hardware ISP. On the other hand, with the PCI-e interface, flash 
memory bandwidth turns out to be the performance bottleneck. 
However, the storage media bandwidth of an SSD will scale 
easily to the host interface speed by growing NAND channels or 
NAND interface speed. Further since the proposed hardware-ISP 
can fully exploit the storage media bandwidth in a scalable way, 
the growth of the host interface speed would not confine the 
applicability of the ISP. 

5.3 Energy Consumption Evaluation 
Energy reduction is another key benefit of ISP. In a conventional 
system, searching for a specific value that is associated with a 
given key requires that all data be transferred to the host CPU, via 
various system components including the host interface, main 
memory (DRAM), and L1/L2 cache memories. The data is finally 
loaded into a CPU register before being compared with the search 
key. With a match, the search operation is done. Otherwise, the 
data is discarded after uselessly spending energy and time. Note 
that this inefficiency can be amplified in the network-prevalent 
data center environment because the data should travel through 
even more system components and cables. On the contrary, the 
proposed ISP performs the compare operations inside the SSD 
through simple hardware logics in FMCs. As a result, most data 
that do not match the key are filtered early at the minimum 
distance from the storage medium. 

Table 5: Comparison of normalized energy consumption. 

Processing method Energy consumption 
ISP (modified firmware) 0.142 

IHP (conventional) 1.000 
 

To estimate the energy reduction benefit of the ISP approach, we 
measured the energy consumption of a string search workload on 
a real platform. The benchmark is executed on a laptop PC with a 
2 GHz Intel Centrino Core 2 processor, 1 GB of memory and a 
Samsung 64 GB SSD. Since an actual implementation of the 
hardware ISP is not yet available, we modified the SSD firmware 
to emulate the hardware ISP behavior. Assuming that there are 
hardware comparison logic modules, we randomly selected data 
within the SSD and returned them in response to a specific 
command of the host. As the hardware comparison logic is simple, 
and incurs negligible latency and power overhead, this emulation 
method gives us a reasonable estimate of the potential energy gain 
of ISP. The results are normalized to that of IHP and shown in 
Table 5. Energy consumption of ISP is just 14% of the IHP 
scheme. 

6. CONCLUSIONS 
We presented the idea of “in-storage processing” (ISP) for data-
intensive applications on flash-based SSDs. ISP addresses the low 
utilization of available data bandwidth and computation power in 
SSDs and opens up new exciting opportunities to increase the 
performance and energy efficiency of data-intensive workloads. 
The main idea of ISP is to move data-intensive processing to 
inside flash SSDs, close to the data source (flash memory chips) 
and to send the (reduced) results of the processing to the host. 
This allows us to fully exploit the anticipated high raw flash 
memory bandwidth and to reduce the amount of upward data 
transfer through the host interface. The special-purpose computing 
module deployed in the SSD controller is a key enabler of 



practical ISP. We showed in this paper that the hardware-based 
ISP approach realizes significant performance improvement for 
the key database operation, scan, compared with the conventional 
host processing approach. Moreover, the hardware-based ISP 
consumes much less energy at negligible cost overheads. 

As large data-intensive applications are popular and their demands 
for data processing grow exponentially, the current computing 
paradigm of bringing data to host CPU for computation will 
encounter the unprecedented “bandwidth crisis” along the path 
from storage, network, DRAM to CPU. Unfortunately, the 
contemporary solution with the simple map-reduce programing 
paradigm on massively large numbers of commodity PC clusters 
would be also sub-optimal because it also brings data to the host 
CPU. A more fundamental solution is to bring the computation 
close to data itself, and thus to remove the potential bandwidth 
bottleneck. Fortunately, with the advent of the bandwidth 
breakthrough in flash memory and the intrinsic parallelism inside 
an SSD, it is the right time to revisit the concept of database 
machines and active disks with the cost-effective SoC technology. 
As we demonstrated in this paper, ISP can be a very promising 
scale-out solution for the next generation data-intensive 
computing paradigm in terms of performance, cost and power. 
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