
Implementing exceptions in the C programming language 1

Implementing exceptions in the C programming langua ge
Adomas Paltanavič ius, Student of Vilnius Lyceum, Class 2B

IMPLEMENTING EXCEPTIONS IN THE C PROGRAMMING LANGUAGE ..1

INTRODUCTION..1
INTRODUCING EXCEPTIONS..1
MOTIVATION ..2
LICENSE...2
SOURCE STRUCTURE..2
SOURCE PREREQUISITES...2
SOURCE SUMMARY..2

What is Implemented ..2
Syntax of TRY ...3
Syntax of EXCEPT/EXPECT/CATCH..3
Syntax of RAISE..3
Syntax of ON...3
Main features..3
Notes on memory management...3

THE SOURCE ...4

MAIN HEADER FILE ..4
Avoiding multiple includes ...4
Including necessary header files ..4
Naming conventions ...4
C syntax hacks ..4
Getting name of function we’re in ..5
The exception value ..5
Controlling variables..6
Debugging of exceptions ..6
Managing handlers stack ...8
Exception raising code ...9
The ON impelemented ...10
The magical macros ...11

EXAMPLE PROGRAM...11

Introduction
This document briefly introduces the reader to the method of implementing generalized excep-
tions in structural programming language C. Its superset, C++ already has this capability, yet it
is hardwired into the language, and is therefore not interesting as a hack.
On the other hand, this project authored by Adomas Paltanavičius, is written without using any
exception-specifically compiler’s extensions; it’s just a hack1.
This document consists of the listing intermixed with detailed comments for inexperienced
readers.

Introducing exceptions
Exceptions are objects, with capability to be raised at certain place in code, and to be handled
at another place of code. In a nutshell, it produces alternative to standard signal handling and
library error-function methods. Thus it is usually very convenient.

1 Hack in this case means “Something that is done with big difficulty and surprises much.”

 2 Implementing exceptions in the C programming language

Motivation
Some folks say C is dead. This is surely not a true. A quick look around tell the right situation.
Many systems requiring highest efficiently (yet portability too) are writing in plain C. On the
other hand, if you start learning from C, all other most popular today’s languages look similar
(and they really are) after that (that is, C++, C# and Java).

License
Copyright (C) 2003 Adomas Paltanavi čius

This program is free software; you can redistribute it and/or modifyit under
the terms of the GNU General Public License as publ ished by
the Free Software Foundation; either version 2 of t he License, or
(at your option) any later version.

This program is distributed in the hope that it wil l be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Bosto n, MA 02111-1307 USA. */

Source structure
The source is contained in one header file, exception.h . This file is prepared for multi-
inclusion. Yet it hasn’t updated to be shared among few source files efficiently (currently, each
file inlines its own copy of static functions), though this is not a hard task.

Source prerequisites
For many reasons (it’s not a place to list them here), many companies around the world use
GNU2 Compiler Collection (former GNU C Compiler), gcc in short. Also, this header file re-
quires C preprocessor, of course. GNU’s one will do.

Source summary
To understand all this, you should be experienced in C, and also know the setjmp interface.
(Unixers do.)

What is Implemented
• TRY ― a catcher block.
• EXCEPT, EXPECT, CATCH ― a handler block.
• RAISE ― raises an exception.
• ON ― a handler.

IMPORTANT

2 GNU means “GNU’s Not Unix”; it is a project fighting for freedom.

Implementing exceptions in the C programming language 3

TRY without EXCEPT does not work properly. This is impossible to fix, at least I don't see
the way. Anyway, if you don't want to break the whole system, I see no other need for such
a construct.

Syntax of TRY
The syntax is:

try { statements; } except { handler blocks; }

Where:
• statements ― valid C statements;
• handler blocks ― valid handler blocks (see Syntax of ON);

Syntax of EXCEPT/EXPECT/CATCH
These all three keywords are actually synonyms. They cannot be used alone. The syntax is:

except { handler blocks; }

Where:
• handler blocks ― valid handler blocks.

Syntax of RAISE
The syntax is:

raise (params)

Where:
• params ― depend on your local implementation. By default, it is a number (int).

Syntax of ON
The syntax is:

on (params) { statements; }

Where:
• params ― valid C expression
• statements ― valid C statements

Main features
• Nested catcher blocks.
• Raising an exception outside catcher block (this results in an unhandled exception.)
• Raising an exception in function called from catcher block.
• Different types for exception structures.
• Reporting file and line where exception was raised/handled.

Notes on memory management
Since customized exceptions usually allocate memory dynamically, it would be nice to have
support for freeing function, which would be called after it's not needed anymore:

 4 Implementing exceptions in the C programming language

_EXC_FREE. I. e. after exception is handled. This is listed as to-do item, yet not necessary in
the example implementation.

The source
After dealing with various concerns, it is finally the time to list source code. As said before,
source code is rich with comments, yet reading it should be a pleasure even for a novice.

Main header file
This section lists the source of header file.

Avoiding multiple includes
This piece of code checks if the header file was already included and aborts in that case.

#if defined __EXCEPTION_H__
error Header file "exception.h" used twice. Thi s is the Wrong Thing.
#endif

#define __EXCEPTION_H__

Including necessary header files
Some other standard headers are necessary, most notably the setjmp .

#include <setjmp.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

Naming conventions
The default prefix is ̀__exc' for functions and ̀__EXC' for macros. Underscores mean
you shouldn't touch them.

C syntax hacks
Oh, god, I felt like an inventor after writing these.
Clearly, code

for (start (), J = 1; J; end (), J = 0)
 code ();

Does this:
• executes start
• executes code
• executes end
• ...and terminates.

It also works if nested (think why yourself.) For our purposes we define two macros:

/* Execute START, then block after the macro, and f inally END. */

#define __EXC_BLOCK(start, end) \
 for (start, __exc_block_pass = 1; \
 __exc_block_pass; \

Implementing exceptions in the C programming language 5

 end, __exc_block_pass = 0)

/* Likewise, but START block is empty. */

#define __EXC_END(end) \
 for (__exc_block_pass = 1; \
 __exc_block_pass; \
 end, __exc_block_pass = 0)

Getting name of function we’re in
Standard C predefines __LINE__ , __FILE__ are not enough for error reporting. We’d like
to include function name too. GCC includes things which expand to the name of current func-
tion's name.

#if (!defined (__GNUC__) || __GNUC__ < 2 || \
 __GNUC_MINOR__ < (defined (__cplusplus) ? 6 : 4))
 /* Otherwise stick to unknown. */
define __EXC_FUNCTION (char *) 0
#else
define __EXC_FUNCTION __PRETTY_FUNCTION__
#endif

The exception value
You'll want to make local changes to these. For example, to use your own exception structure.
Exception is by default an int . Anyway, it can be anything from string to some structure.
Whatever the implementation you choose, type name should be defined as __EXC_TYPE.
The RAISE (and ON) macro accepts as many arguments, as it is given, so your function may
use all the power of argument passing. Define your function's name as __EXC_MAKE. Excep-
tions are compared in ON macro. You should define comparing function as __EXC_EQ.
For example, if you'd like to use strings in place of numbers, use this snippet:

#define __EXC_TYPE char *
#define __EXC_EQ(s1, s2) (strcasecmp (s1, s2) == 0)
#define __EXC_PRINT(e, stream) fprintf (stream, "% s", e)

The default implementation follows:

#ifndef __EXC_TYPE
define __EXC_TYPE int

/* Include the default __EXC_PRINT. */
define __EXC_TYPE_DEFAULT
#endif

#ifndef __EXC_MAKE
define __EXC_MAKE(code...) code
#endif

#ifndef __EXC_EQ
define __EXC_EQ(c1, c2) ((c1) == (c2))
#endif

 6 Implementing exceptions in the C programming language

There is also an optional exception printer. This is used for debugging purposes only. Define
your self’s one as __EXC_PRINT. Arguments are exception of type __EXC_TYPE and
stream to print to. Default printer follows:

#if !defined (__EXC_PRINT) && defined (__EXC_TYPE_D EFAULT)
define __EXC_PRINT(e, stream) \
 fprintf (stream, "%d", e)
#endif

Controlling variables
This part of code contains all variables used for handling exceptions etc. All variables are de-
clared volatile to force non-optimization.
This counter is used by __EXC_BLOCK. It works well even if nested.

static volatile int __exc_block_pass;

Flag to be set by ON after exception is handled.

static volatile int __exc_handled;

For indexing every call to TRY.

static volatile unsigned __exc_tries;

These identify the raised exception. File, function, line and the exception itself.

static char *__exc_file;
static char *__exc_function;
static unsigned __exc_line;
static __EXC_TYPE __exc_code;

Stack is actually a linked list of catcher cells.

struct __exc_stack
{
 unsigned num;
 jmp_buf j;
 struct __exc_stack *prev;
};

This is the global stack of catchers.

static struct __exc_stack *__exc_global;

Debugging of exceptions
Code in this section generates many (really) messages telling what is going to happen. In order
to work with it successfully, you should define __EXC_PRINT (see above.)

#ifdef __EXC_DEBUG
include <stdarg.h>
ifndef __EXC_STREAM

I often redirect debugging information to a file, though printing to screen is also useful:

define __EXC_STREAM stdout
endif

This function prints error message:

static void
__exc_debug (char *fmt, ...)

Implementing exceptions in the C programming language 7

{
 va_list ap;

 fprintf (__EXC_STREAM, "__EXC: ");
 va_start (ap, fmt);
 vfprintf (__EXC_STREAM, fmt, ap);
 va_end (ap);
 fprintf (__EXC_STREAM, "\n");
}

For printing __exc_global.

static void
__exc_print_global ()
{
 struct __exc_stack *level = __exc_global;
 unsigned items;

 if (level == NULL)
 {
 fprintf (__EXC_STREAM, "Stack empty\n");
 return;
 }

 fprintf (__EXC_STREAM, "Current stack (from botto m to top):\n");
 for (items = 0; level; level = level->prev)
 {
 fprintf (__EXC_STREAM, "%c ", items == 0 ? '[' : ' ');
 fprintf (__EXC_STREAM, "%u", level->num);
 fprintf (__EXC_STREAM, " %c\n", level->prev ? ' ' : ']');
 items++;
 }

 fprintf (__EXC_STREAM, "Totally %u items.\n", ite ms);
}

#else
define __exc_debug(args...)
define __exc_print_global()
#endif

Function below prints information about exception. Called in debug mode, or when no handler
is found:

void
__exc_print (FILE *stream, char *file, char *functi on, unsigned line,
 __EXC_TYPE code)
{
 fprintf (stream, "Exception in file \"%s\", at li ne %u",
 file, line);
 if (function)
 {
 fprintf (stream, ", in function \"%s\"", func tion);
 }
 fprintf (stream, ".");

#ifdef __EXC_PRINT

 8 Implementing exceptions in the C programming language

 fprintf (stream, " Exception: ");
 __EXC_PRINT (code, stream);
#endif
 fprintf (stream, "\n");
}

Managing handlers stack
All handlers (their jmp_buf s, actually, are pushed onto the handlers list (__exc_global).
The first function takes exception from stack, putting into J (if nonzero). If stack is empty,
print error message and exit. Used in EXCEPT.

static void
__exc_pop (jmp_buf *j)
{
 register struct __exc_stack *stored = __exc_globa l;

 __exc_debug ("POP () to %p", j);

 if (stored == NULL)
 {
 __exc_debug ("Unhandled exception.");

 fprintf (stderr, "Unhandled exception:\n");
 __exc_print (stderr, __exc_file, __exc_functi on,
 __exc_line, __exc_code);

 exit (3);
 }

 __exc_global = stored->prev;

 if (j)
 {

This assumes that jmp_buf is a structure etc. and can be copied rawely. This is true in all
architectures supported by GLIBC3, as far as I know:

 memcpy (j, &stored->j, sizeof (jmp_buf));
 }

 __exc_debug ("Popped");
 __exc_print_global ();

 /* While with MALLOC, free. When using obstacks it is better not to
 free and hold up. */
 free (stored);
}

Second function pushes J onto the stack, with RETURNED as value from SETJMP. Returns
nonzero, if RETURNED is 0. If RETURNED is nonzero, returns 0. Used in TRY.

3 GNU C Library, the most core element after the kernel of the Unix system. Here I talk about the GNU’s imple-
mentation, which is used in Linux etc.

Implementing exceptions in the C programming language 9

static int
__exc_push (jmp_buf *j, int returned)
{
 struct __exc_stack *new;

 __exc_debug ("PUSH (), %p, %d", j, returned);

SETJMP returns 0 first time, nonzero from __EXC_RAISE. Returning false-like value here
(0) will enter the else branch (that is, EXCEPT.)

 if (returned != 0)
 {
 __exc_debug ("Returning from RAISE");
 return 0;
 }

Since this didn't come from RAISE, fine to increase counter:

 ++__exc_tries;
 __exc_debug ("This is PUSH () number %u", __exc_t ries);

Using memcpy here is the best alternative:

 new = malloc (sizeof (struct __exc_stack));
 memcpy (&new->j, j, sizeof (jmp_buf));
 new->num = __exc_tries;
 new->prev = __exc_global;
 __exc_global = new;

 __exc_print_global ();

 return 1;
}

Exception raising code
This function raises an exception in FILE at LINE , with code CODE. Used in RAISE.

static void
__exc_raise (char *file, char *function, unsigned l ine, __EXC_TYPE code)
{
 jmp_buf j;

 __exc_debug ("RAISE ()");
#if defined __EXC_DEBUG
 __exc_print (__EXC_STREAM, file, function, line, code);
#endif
 __exc_file = file;
 __exc_function = function;
 __exc_line = line;
 __exc_code = code;

Pop for jumping:

 __exc_pop (&j);
 __exc_debug ("Jumping to the handler");

 10 Implementing exceptions in the C programming language

LONGJUMP to J with nonzero value.

 longjmp (j, 1);
}

This function raises it in upper level of catcher blocks.

static void
__exc_reraise ()
{
 jmp_buf j;

 __exc_debug ("RERAISE ()");
#ifdef __EXC_DEBUG
 __exc_print (__EXC_STREAM, __exc_file, __exc_func tion,
 __exc_line, __exc_code);
#endif

 __exc_pop (&j);
 longjmp (j, 1);
}

The ON implemented
This code implements ON on the low-level side.

static int
__exc_on (char *file, char *function, unsigned line , __EXC_TYPE code)
{
 __exc_debug ("ON ()");
 __exc_debug ("Trying to handle in file \"%s\", at line %u", file,
line);
#ifdef __EXC_DEBUG
 if (function)
 {
 __exc_debug ("In function \"%s\".", function) ;
 }
#endif

 if (__exc_handled == 1)
 {
 __exc_debug ("Exception already handled in th is level, skip");
 return 0;
 }

 if (__EXC_EQ (code, __exc_code))
 {
 __exc_debug ("This handler FITS");

 __exc_handled = 1;
 return 1;
 }

 __exc_debug ("This handler DOESN'T FIT");

In case exception not matched, return zero:

Implementing exceptions in the C programming language 11

 return 0;
}

The magical macros
These macros are really magical. Though the modularity helps to keep them as simple, as pos-
sible. First, TRY is defined:

#define try \
 if (({jmp_buf __exc_j; \
 int __exc_ret; \
 __exc_ret = setjmp (__exc_j); \
 __exc_push (&__exc_j, __exc_ret);})) \
 __EXC_END(__exc_pop (0))

Then RAISE:

#define raise(code...) \
 __exc_raise (__FILE__, __EXC_FUNCTION, \
 __LINE__, __EXC_MAKE (code))

Then EXCEPT:

#define except \
 else \
 __EXC_BLOCK (__exc_handled = 0, \
 ({ if (__exc_handled == 0) \
 __exc_reraise (); }))

EXPECT and CATCH is an alias for EXCEPT:

#define expect except
#define catch except

And finally, ON is defined:

#define on(code...) \
 if (__exc_on (__FILE__, __EXC_FUNCTION, \
 __LINE__, __EXC_MAKE (code)))

Example program
This section contains example program w/o any comments.

#include <stdio.h>
#include "exception.h"

#define DIVISION_BY_ZERO 1001

int divide (int a, int b) {
 if (b == 0) {
 raise (DIVISION_BY_ZERO);
 } else {
 Return a/b;
 }
}

int main (int argc, char **argv)
{

 12 Implementing exceptions in the C programming language

 int i, j;

 try {
 printf (“%d\n”, divide (100, 0));
 } except {
 on (DIVISION_BY_ZERO) {
 printf ("Caught up division by zero.");
 exit (0);
 }
 }
 return 0;
}

After running, it you should get the following output:

