Implementing exceptions in the C programming laggua 1

Implementing exceptions in the C programming langua ge
Adomas Paltanavi¢ius, Student of Vilnius Lyceum, Class 2B

IMPLEMENTING EXCEPTIONSIN THE C PROGRAMMING LANGUAGEccoiiiiiriee e 1
INTRODUGCTION ...t eeteetteeeeeeeettteet s s s s s e e e e e e e aaeaaeeeeeeeaee et ee e e e e eea s be b bbb 4a s 422 ama e e o e e e e e e e eeeeaeeeeeeeeeesenbbnbbbnnn s 1
INTRODUCING EXCEPTIONS.tetttttttttttttunntunstuunaasaaaaeassaaaaaasaaastaeateeeesessensbsssaas s asaaaseaassaassaeaaeeasesseseeeeennnns 1
IMMOTIVATION ...ttt et ee ettt et e e e oo s ettt e e a2 e e 4 e s e s s et e e e e ee e e e e s mmemE e e e e e e e e s aesn s nnnnn e e e e e e eeeeeesennnnnne 2.

[[0 = N = PP PP TP PR TP 2
SOURCE STRUCTURE ... uttttttttettteaeeeeasaaasbsbe et eeaaasasassbbsee e e eeeeeeeasesaann e b b e be e et et e e aeeaansbnbebeeeeeeaeesesanannsnnennnes 2
SOURCE PREREQUISITES. .ttt ttttutetttteeettieetsueetsteessteesessiesssseessaetesnestsnetsstaessstessraseeresteresinesesinessrinesesnn. 2
SOURCE SUMMARYutttttettttteeeaessaaausbessesee et e e e e saaasseeee e e eeseeeeeaaa s s be b e b e e et e e eeeeeeaaamms s et eeeeeeeeeesaanannanbnnnneeaeaeens 2
VAV F= R T3 [T 0] =T 4T 1 (= o SRR 2.
YY1 = Va0) B I 3
Syntax of EXCEPT/EXPECT/CATCH ..ot ieeeeeee ettt ettt et e e e e snnaeeee s 3
SYNEAX OF RAISE ... eeiiiiiiiitiie ettt ettt e e ettt e e ekt e et e s e e et e e sttt e e s e e e e et e e e e as s re et e e aasre e e e e s nene s 3
Y1 2= Do 1\ U EERRSR 3
VBN TEALUIES ... e e etttk e e e ekt e ook et e e et et e e e e a kb et e e e e nb et e e s aanbn e e e e s ntnneeeenres 3
NOtes 0N MEMOIY MANAGEIMENT.o immmmmmmreeeeeteeeteresse e e e et e eee s s ssssae e e e eeaeeseesasarnnnnrerreeeeeeeeeaas 3

S 11 RS 4

IMIAIN HEADER FILE ..cttttutttteeeeautteeeeeaatttteeesaastee e e e easeeee e easbae e e a4 am b be e e e e e ab b e e e e e 4o s ke e e e e eame e e e aa kbt e e e e e anbbneaeeeaabbeeeessnnnes 4
AVvOiding MUILIPIE INCIUAES ... et e e e re e e e e s s s e et eereeaeeeeeenannnnes 4.
INClUdINg NECESSArY NEAUET fIlESeiieet e s e et ettt e et e ettt s e e e e e e e aaeaaaaeeeeeeesanseenes 4
[INF= Lo T o T oo] 0 1Y7=T 1 1[0 o 1= USSR 4.

C SYNEAX NACKS ...t ettt e e et e e e et e e s e e e e e e e ne s 4
Getting Nname Of fUNCLON WE'TE IN ... ceeeeeee e e e e e e e e e s s e r e e eeeeeeeeaaaanes 5
QI LTSN (et =] o] 10 g V=11 P 5
CoNtrolliNg VANADIES. ...ttt ettt e e e et e e s s e e e e 6
[D1=T o 0T o 1 To J 0] =Y CoT=1 o] 1o g SRR 6...
Managing NANAIEIS STACKoiiiiiiiiie et e e e s e e s e e e e e e e e nenes 8
L (et=T o1 i o] g I =TS o oo Lo [PSR 9.
LA L=TO N AT a] o151 (=T 0 0T=T 0] (= o RS 10
B (ST = o Tox= | g Vo o LSRR 11.

EXAMPLE PROGRAM......cciiitiittitiiitttitt s e e s s et e e e e e taaaaeeaeaeteee e et eee e e s ea s b e b b 1a e s e e e e aaeaaeeeeeeeaeeaeeteeeesnssnnnbnnnnnnas 11

Introduction

This document briefly introduces the reader tortteghod of implementing generalized excep-
tions in structural programming language C. Itsesspt, C++ already has this capability, yet it
is hardwired into the language, and is therefotanteresting as a hack.

On the other hand, this project authored by AdoReltanawius, is written without using any
exception-specifically compiler’s extensions; jtist a hack

This document consists of the listing intermixedhwiletailed comments for inexperienced
readers.

Introducing exceptions

Exceptions are objects, with capability to be raiaé certain place in code, and to be handled
at another place of code. In a nutshell, it produaéernative to standard signal handling and
library error-function methods. Thus it is usualry convenient.

! Hack in this case means “Something that is dotie iy difficulty and surprises much.”

2 Implementing exceptions in the C programming |aaggu

Motivation

Some folks say C is dead. This is surely not a t#uguick look around tell the right situation.
Many systems requiring highest efficiently (yet tability too) are writing in plain C. On the
other hand, if you start learning from C, all otheost popular today’s languages look similar
(and they really are) after that (that is, C++,a0# Java).

License

Copyright (C) 2003 Adomas Paltanavi ¢ius

This program is free software; you can redistribute it and/or modifyit under
the terms of the GNU General Public License as publ ished by

the Free Software Foundation; either version 2 of t he License, or

(at your option) any later version.

This program is distributed in the hope that it wil | be useful,
but WITHOUT ANY WARRANTY:; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Bosto n, MA 02111-1307 USA. */

Source structure

The source is contained in one header Bbeption.h . This file is prepared for multi-
inclusion. Yet it hasn’'t updated to be shared amemgsource files efficiently (currently, each
file inlines its own copy of static functions), tingh this is not a hard task.

Source prerequisites

For many reasons (it's not a place to list themehemany companies around the world use
GNU? Compiler Collection (former GNU C Compilegcc in short. Also, this header file re-
quires C preprocessor, of course. GNU’s one will do

Source summary

To understand all this, you should be experienoe@,iand also know theetjmp interface.
(Unixers do.)

What is Implemented

e TRY— a catcher block.

e EXCEPT, EXPECT, CATCH — a handler block.
e RAISE — raises an exception.

e ON— a handler.

IMPORTANT

2 GNU means “GNU’s Not Unix”; it is a project fightj for freedom.

Implementing exceptions in the C programming laggua 3

TRY without EXCEPTdoes not work properly. This is impossible to it least | don't see
the way. Anyway, if you don't want to break the \ehsystem, | see no other need for such
a construct.

Syntax of TRY
The syntax is:

t ry { statements; } except { handler blocks; }
Where:
e statements — valid C statements;
¢ handler blocks — valid handler blocks (see Syntax of ON);

Syntax of EXCEPT/EXPECT/CATCH
These all three keywords are actually synonymsy Taanot be used alone. The syntax is:
except { handl er bl ocks; }

Where:
e handler blocks — valid handler blocks.

Syntax of RAISE
The syntax is:
rai se (parans)

Where:
e params — depend on your local implementation. By defatls a number (int).

Syntax of ON
The syntax is:

on (paranms) { statenents; }

Where:
e params — valid C expression
e statements — valid C statements

Main features

Nested catcher blocks.

Raising an exception outside catcher block (trssilte in an unhandled exception.)
Raising an exception in function called from catdbleck.

Different types for exception structures.

Reporting file and line where exception was raisaddled.

Notes on memory management

Since customized exceptions usually allocate merdgnamically, it would be nice to have
support for freeing function, which would be callefter it's not needed anymore:

4 Implementing exceptions in the C programming |aaggu

_EXC_FREE. |I. e. after exception is handled. Téilssted as to-do item, yet not necessary in
the example implementation.

The source

After dealing with various concerns, it is finallye time to list source code. As said before,
source code is rich with comments, yet readingaoutd be a pleasure even for a novice.

Main header file
This section lists the source of header file.

Avoiding multiple includes
This piece of code checks if the header file wasaaly included and aborts in that case.

#if defined __EXCEPTION_H___
error Header file "exception.h" used twice. Thi s is the Wrong Thing.
#endif

#define _ EXCEPTION_H_

Including necessary header files
Some other standard headers are necessary, maltyribiesetimp .

#include <setjmp.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

Naming conventions

The default prefix is__exc' for functions and___EXC' for macros. Underscores mean
you shouldn't touch them.

C syntax hacks
Oh, god, | felt like an inventor after writing thees
Clearly, code

for (start (), J=1;J; end (), J=0)
code ();
Does this:
e executestart
e executesode
e executeend

e ..and terminates.
It also works if nested (think why yourself.) Farrgurposes we define two macros:

[* Execute START, then block after the macro, and f inally END. */
#define _EXC_BLOCK(start, end) \
for (start, __exc_block_pass =1; \

__exc_block_pass; \

Implementing exceptions in the C programming laggua 5

end, __exc_block _pass = 0)
/* Likewise, but START block is empty. */

#define _ EXC_END(end) \
for (__exc_block_pass = 1; \
__exc_block_pass; \

end, __exc_block pass = 0)

Getting name of function we're in

Standard C predefines LINE__, FILE__ are not enough for error reporting. We'd like
to include function name too. GCC includes thindgsolv expand to the name of current func-
tion's name.

#if (\defined (__GNUC_) || _GNUC__ <2\

__GNUC_MINOR__ < (defined (__cplusplus) ? 6 : 4))
/* Otherwise stick to unknown. */
define _ EXC_FUNCTION (char*® 0
#else
define _ EXC_FUNCTION __ PRETTY_FUNCTION___
#endif

The exception value

You'll want to make local changes to these. Fang)e, to use your own exception structure.
Exception is by default ant . Anyway, it can be anything from string to sormreicture.
Whatever the implementation you choose, type nanoelld be defined as EXC_TYPE
The RAISE (andON macro accepts as many arguments, as it is gaegpur function may
use all the power of argument passing. Define yonction's name as EXC_MAKEEXxcep-
tions are compared in ON macro. You should deforemaring function as EXC_EQ

For example, if you'd like to use strings in plat@umbers, use this snippet:

#define __ EXC_TYPE char *
#define _ EXC_EQ(sl, s2) (strcasecmp (s1, s2)==0)
#define __ EXC_PRINT(e, stream) fprintf (stream, "% s", e)

The default implementation follows:

#ifndef _ EXC_TYPE
define __ EXC_TYPE int

/* Include the default __ EXC_PRINT. */
define __ EXC_TYPE_DEFAULT
#endif

#ifndef _ EXC_MAKE
define _ EXC_MAKE(code...) code
#endif

#ifndef _ EXC_EQ
define __ EXC_EQ(c1, c2) ((c1) == (c2))
#endif

6 Implementing exceptions in the C programming |aaggu

There is also an optional exception printer. Thissed for debugging purposes only. Define
your self's one as EXC_PRINT. Arguments are exception of type EXC_TYPE and
stream to print to. Default printer follows:

#if ldefined (__EXC_PRINT) && defined (__ EXC_TYPE_D EFAULT)
define __EXC_PRINT(e, stream) \

fprintf (stream, "%d", e)
#endif

Controlling variables

This part of code contains all variables used fmdiing exceptions etc. All variables are de-
clared volatile to force non-optimization.
This counter is used by EXC BLOCK. It works waalen if nested.

static volatile int __exc_block_pass;

Flag to be set by ON after exception is handled.

static volatile int __exc_handled;

For indexing every call tdRY.

static volatile unsigned __exc_tries;

These identify the raised exception. File, functine and the exception itself.

static char *__exc_file;

static char *__exc_function;

static unsigned __exc_line;

static __ EXC_TYPE __exc_code;

Stack is actually a linked list of catcher cells.

struct __exc_stack

{

unsigned num;
jmp_buf j;
struct __exc_stack *prev;

}1
This is the global stack of catchers.

static struct __exc_stack *__exc_global;
Debugging of exceptions

Code in this section generates many (really) messtailing what is going to happen. In order
to work with it successfully, you should defineEXC_PRINT (see above.)

#ifdef _ EXC_DEBUG
include <stdarg.h>
ifndef _ EXC_STREAM

| often redirect debugging information to a filkotigh printing to screen is also useful:

define _ EXC_STREAM stdout
endif

This function prints error message:

static void
__exc_debug (char *fmt, ...)

Implementing exceptions in the C programming laggua 7

{

va_list ap;

fprintf (__EXC_STREAM, "__EXC:");
va_start (ap, fmt);
vfprintf (__ EXC_STREAM, fmt, ap);
va_end (ap);
fprintf (__EXC_STREAM, "\n");

}

For printing __exc_global.

static void
__exc_print_global ()

struct __exc_stack *level = __exc_global,
unsigned items;

if (level == NULL)

{
fprintf (__EXC_STREAM, "Stack empty\n");

return;
}
fprintf (__EXC_STREAM, "Current stack (from botto m to top):\n");
for (items = O; level; level = level->prev)
{
fprintf (__EXC_STREAM, "%c ", items ==0? [Y
fprintf (__EXC_STREAM, "%u", level->num);
fprintf (__EXC_STREAM, " %c\n", level->prev ? T
items++;
}
fprintf (__EXC_STREAM, "Totally %u items.\n", ite ms);
#else

define __exc_debug(args...)
define __exc_print_global()
#endif

Function below prints information about exceptiddalled in debug mode, or when no handler
is found:

void
__exc_print (FILE *stream, char *file, char *functi on, unsigned line,
__EXC_TYPE code)
fprintf (stream, "Exception in file \"%s\", at li ne %u",
file, line);

if (function)
fprintf (stream, ", in function \"%s\"", func tion);

fprintf (stream, ".");

#ifdef __EXC_PRINT

8 Implementing exceptions in the C programming |aaggu

fprintf (stream, " Exception: ");

__EXC_PRINT (code, stream);
#endif

fprintf (stream, "\n");

Managing handlers stack

All handlers (theifmp_buf s, actually, are pushed onto the handlerg lisexc_global).
The first function takes exception from stack, ggtinto J (if nonzero). If stack is empty,
print error message and exit. UsedEXCEPT

static void
__exc_pop (jmp_buf *j)

register struct __exc_stack *stored = __exc_globa l;
__exc_debug ("POP () to %p", j);

if (stored == NULL)
{

__exc_debug ("Unhandled exception.");

fprintf (stderr, "Unhandled exception:\n");
__exc_print (stderr, __exc_file, __exc_functi on,
__exc_line, __exc_code);

exit (3);
}

__exc_global = stored->prev;
if (j)
{
This assumes th@mp_buf is a structure etc. and can be copied rawely.s Ehirue in all
architectures supported by GLIB@s far as | know:
memcpy (j, &stored->j, sizeof (jmp_buf));

}

__exc_debug ("Popped");
__exc_print_global ();

/* While with MALLOC, free. When using obstacks it is better not to
free and hold up. */
free (stored);

}

Second function pushekonto the stack, wittiRETURNELs value fronSETJMR Returns
nonzero, ifRETURNEDs 0. IFRETURNEIDs nonzero, returns 0. UsedTiRY.

¥ GNU C Library, the most core element after thenkéof the Unix system. Here | talk about the GNigple-
mentation, which is used in Linux etc.

Implementing exceptions in the C programming laggua 9

static int
__exc_push (jmp_buf *j, int returned)

struct __exc_stack *new;

__exc_debug ("PUSH (), %p, %d", j, returned);

SETJMPreturns O first time, nonzero from EXC_RAISE. Returning false-like value here
(0) will enter the else branch (that is, EXCEPT.)

if (returned !'=0)

{
__exc_debug ("Returning from RAISE");

return O;

}

Since this didn't come from RAISE, fine to increasanter:

++__exc_tries;
__exc_debug ("This is PUSH () number %u", __exc_t ries);

Using memcpy here is the best alternative:

new = malloc (sizeof (struct __exc_stack));
memcpy (&new->j, j, sizeof (jmp_buf));
new->num = __exc_tries;

new->prev = __exc_global;

__exc_global = new;

__exc_print_global ();

return 1;

}

Exception raising code
This function raises an exceptionRiLE atLINE , with codeCODEUsed inRAISE.

static void
__exc_raise (char *file, char *function, unsigned | ine, _ EXC_TYPE code)

jmp_buf j;

__exc_debug ("RAISE ()");
#if defined __ EXC_DEBUG

__exc_print (__EXC_STREAM, file, function, line, code);
#endif

__exc_file =file;

__exc_function = function;

__exc_line =line;

__exc_code = code;

Pop for jumping:

__exc_pop (&j);
__exc_debug ("Jumping to the handler");

10 Implementing exceptions in the C programming |aaggu

LONGJUMHRo J with nonzero value.
longjmp (j, 1);
}

This function raises it in upper level of catchirdis.

static void
__exc_reraise ()

jmp_buf j;

__exc_debug ("RERAISE ()");
#ifdef _ EXC_DEBUG
__exc_print (__EXC_STREAM, __exc_file, __exc_func tion,
__exc_line, __exc_code);
#endif

__exc_pop (&j);
longjmp (j, 1);

The ONimplemented
This code implement®Non the low-level side.

static int
__exc_on (char *file, char *function, unsigned line ,__EXC_TYPE code)

__exc_debug ("ON ()";

__exc_debug ("Trying to handle in file \"%s\", at line %u", file,
line);
#ifdef _ EXC_DEBUG

if (function)

__exc_debug ("In function \"%s\".", function) ;

}
#endif

if (_exc_handled == 1)

__exc_debug ("Exception already handled in th is level, skip");
return O;

}

if (__ EXC_EQ (code, __exc_code))

{
__exc_debug ("This handler FITS");

__exc_handled = 1;
return 1;

}
__exc_debug ("This handler DOESN'T FIT"),
In case exception not matched, return zero:

Implementing exceptions in the C programming laggua 11

return O;

}

The magical macros

These macros are really magical. Though the modulaelps to keep them as simple, as pos-
sible. First,TRY is defined:

#define try \
if ({jmp_buf _exc_j; \
int__exc_ret; \

__exc_ret = setjimp (__exc_j); \
__exc_push (& _exc_j, __exc_ret);Ph)\
__EXC_END(__exc_pop (0))

ThenRAISE:
#define raise(code...) \
__exc_raise (__FILE__, EXC_FUNCTION, \
__LINE__, _ EXC_MAKE (code))
ThenEXCEPT
#define except \
else \
__EXC_BLOCK (__exc_handled =0, \

({if (__exc_handled == 0) \
__exc_reraise (); 1)

EXPECTandCATCHs an alias foEXCEPT

#define expect except
#define catch except
And finally, ONis defined:
#define on(code...) \
if (_exc_on(__FILE_, EXC_FUNCTION, \
__LINE__, _ EXC_MAKE (code)))

Example program
This section contains example program w/o any conisne

#include <stdio.h>
#include "exception.h"

#define DIVISION_BY_ZERO 1001

int divide (int a, int b) {
if (b ==0) {
raise (DIVISION_BY_ZERO);
}else {
Return a/b;
}
}

int main (int argc, char **argv)

{

12 Implementing exceptions in the C programming |aaggu

inti, j;

try {

printf (“%d\n”, divide (100, 0));
} except {

on (DIVISION_BY_ZERO) {

printf ("Caught up division by zero.");
exit (0);

}

}

return O;

}
After running, it you should get the following outp

admwpidsaulius ftest ”

