
White Paper

Embedded VoIP for Commercial
and Industrial Applications
Freescale/Arcturus/Encore Software

2				 Embedded VoIP for Commercial and Industrial Applications 	Freescale Semiconductor, Inc.

Contents

1	 An Introduction to VoIP..3

2		 Industrial VoIP..3

2.1		 Protocols and Signaling..3

2.2	 Understanding a SIP Dialog...4

2.3		 About RTP Media..5

2.4	 VoIP Implementation Hurdles..5

2.5	 Device Management and Other Considerations..............................5

3	 System Solution Overview...5

3.1	 Core OS Considerations..5

3.2	 The SIP Stacks..6

3.3	 Endpoint Software Stack...6

3.4	 SIP Server Infrastructure..6

3.5	 Endpoint and Server Management Requirements...........................6

4	 Audio Subsystem...7

4.1	 Voice Processing Subsystem..7

4.2	 Voice Quality..7

4.3	 Voice Quality Measurement...8

4.4	 Selecting a Vocoder...8

4.5	 Echo Canceller...8

5	 Freescale ColdFire MCF53281 Embedded VoIP Solution...............9

5.1	 The ColdFire Advantage..9

5.2	 MCF53281 Software Bundle..9

5.3	 MCF53281 Management Middleware and Configuration Tools......9

5.4	 Other Management Tools and Services...10

5.5	 Firmware Management..10

5.6	 MCF53281 Voice and Media Middleware......................................11

6	 Summary..12

3				 Embedded VoIP for Commercial and Industrial Applications 	Freescale Semiconductor, Inc.

1	 An Introduction to VoIP
VoIP stands for Voice over Internet Protocol. It is a process for sending

audio signals, primarily voice, over a data network, such as the

Internet. The audio is converted into a digital signal and compressed to

reduce data throughput requirements. Then it’s converted into packets

and streamed across the network. At the receiving end, the data is

decompressed and converted back to an audio signal.

There are a number of advantages to using VoIP instead of analog

transmission, with the main one being that you do not need dedicated

analog cables to carry the signal. In many situations an existing data

network, wired or wireless, can be used for VoIP. It is also much easier

to route the signals to different destinations because it’s just a matter

of changing the destination address instead of physically switching the

analog circuit. Since the signals are converted from analog to digital,

it is easier to maintain good audio quality, even in harsh industrial

environments. Additional advantages include:

•	 The system may be able to use an existing application controller,

such as a Freescale ColdFire® MCU, to minimize additional cost

•	 It’s easy to record and archive calls on a computer system

•	 It’s easy to connect to the public phone system through a gateway

•	 Networks can be designed to provide more than one route to a

destination, providing inherent fault tolerance

VoIP communications typically occur between two endpoints.

Data packets can be sent directly between them and may not

need an intermediary server during a conversation. In many

industrial applications the required endpoints are known and

can be programmed directly into the systems. If more flexibility is

required, a server can be used as a kind of electronic telephone

book that stores a list of endpoints and their IP addresses and sets up

the initial connection between the endpoints. Once communication is

established, the server is not needed for the remainder of the call. If

access to the public telephone network is required, a server may be

used as a gateway.

2	 Industrial VoIP
The factors propelling the adoption of commercial and industrial VoIP

are significantly different from those that drive the same technology in

the consumer market. For instance, companies face a different set of

challenges when they try to implement audio applications in building

systems or develop innovative new health care products to assist

our aging population. To address this, we need to change our basic

assumptions about VoIP services.

Consumer products are mostly commodity devices, with price the

primary market driver followed by product features. They are the

purview of manufacturers who look to fill a specific need at a precise

moment in time. The very nature of this type of product means that the

developers need to be prepared to dedicate considerable resources

to a solution that can fulfill immediate requirements, typically at the

edge of the adoption cycle and in advance of stiff competition. Little

consideration is given for product lifespan, component selection or

platform or software scalability.

While this model works well for VoIP applications in ultra-high volumes,

meaningful access to the technology’s core building blocks has

not necessarily migrated to the industrial and commercial markets.

Industrial developers recognize the benefits of VoIP, but they may not

have the internal capacity to create a software team with signaling as

well as low-level DSP vocoder integration experience, thus hindering

their ability to develop a complete solution from the ground up.

That being said, there are still a number of compelling reasons for

implementing VoIP in industrial and commercial applications.

•	 Better customer service—integrating support directly into the

equipment (fast-serve restaurants, ATMs, manufacturing equipment)

•	 Consolidating infrastructure and reducing installation costs—

running on a central data backplane (building systems)

•	 Providing more flexible service delivery—seamlessly integrating

multiple locations (nursing and health care facilities, security

systems, customer service)

•	 More flexible customer support options—centralizing customer

service support and offering that support in multiple languages

(chain restaurants)

Industrial customers are generally looking for complete VoIP solutions

that can be easily integrated into their applications without the need for

telephony expertise. It is also not practical to offer solutions with large

up-front licensing costs and multiple complex licensing requirements.

A hospital bed or gurney with a patient communication device is

a good example of an industrial VoIP application. Using wireless

technology, a network connection with the patient can be maintained

even when he or she is being moved around the hospital. The device

can also include an intercom push button for a direct connection

to the nurse’s station. By using VoIP this could automatically be

routed to different locations, or even different doctors and nurses, to

accommodate shift changes. In addition, the device could function as

a regular telephone through a gateway to the public phone system,

thus allowing the patient to stay in touch with friends and family. The

same industrial VoIP technology enables remote in-home health care

monitoring that supplies the same data as in-hospital monitoring.

2.1 Protocols and Signaling
There are three main software components to a VoIP system: the

signaling stack, the media transport and the audio subsystem. These

need to be tightly synchronized by a master application that manages

the state information for call flows, loads vocoders, enables different

features and starts or stops media transport, audio and other services.

4				 Embedded VoIP for Commercial and Industrial Applications 	Freescale Semiconductor, Inc.

The dominant protocol for VoIP has evolved from legacy H.323 and

MGCP signaling solutions to the lighter weight Session Initiation

Protocol (SIP) RFC 3261. SIP is a request-response type architecture

that looks very similar to HTTP. SIP itself does not include the media.

Instead, SIP’s role is to set up, change and tear down the media

sessions. The media is carried independently using real-time protocol

(RTP) RFC3550, which capitalizes on the speed of the User Datagram

Protocol (UDP) to transport media streams using 10, 20 or 30 ms

packets. In addition to SIP, a media negotiation protocol called Session

Description Protocol (SDP) RFC4566 aids in the negotiation of the

correct vocoders, packet size (ptime) and destination port addressing.

Several related components are also necessary: Network Time Protocol

(NTP) to synchronize time stamps; Simple Traversal of UDP Networks

(STUN) to traverse network address translation (NAT) firewalls and underpin

support for networking TCP/IP; UDP; point-to-point protocol over Ethernet

(PPPoE) and/or Dynamic Host Configuration Protocol (DHCP).

SIP’s open architecture, its familiar nature and relative elegance has

helped accelerate the technology into new markets and industries.

SIP’s reuse of a number of well established functional VoIP

components, such as methods of media encoding, has provided strong

compatibility with existing consumer network technologies. The result

has been an opening up of a traditionally closed industry to a new

generation of communication devices that includes commercial and

industrial applications.

Table 1 (below) shows several signal compression algorithms and the

resulting audio quality compared to the standard for long distance

telephone calls (toll quality).

Vocoder Quality Codec Type

G.711 Toll Quality Narrow Band

G.726 Near Toll Quality Narrow Band

G.729AB Below Toll Quality Narrow Band

G.723.1 Below Toll Quality Narrow Band

iLBC Below Toll Quality Narrow Band

G.722 Better Than Toll Quality Wide Band

Other audio-quality and user-enhancement functions include:

•	 Acoustic echo cancellation for systems with a loudspeaker

•	 Automatic gain control for microphone input

•	 Line echo cancellation when connecting to a standard analog

telephone set

•	 Caller ID

•	 Touch tone (DTMF) support

Acoustic echo cancellation is particularly challenging because it is

highly dependent on the physical implementation of the equipment.

Because of this, it is important to make key parameters, such as gain

and echo path, easily adjustable by the system integrators so they can

be optimized for a particular application.

2.2 Understanding a SIP Dialog
Since SIP is a plain text protocol, tools like Wireshark (www.wireshark.org)

are invaluable for analysis and debug. They are also excellent

resources for understanding call flows and the interactions between

elements. To help illustrate, consider the interaction of two UA

endpoints constructing a basic call through a SIP server. The server

may consist of several components, but for this example it is simply

a proxy with a registrar server. A basic implementation like this can

easily be downloaded and set up on a PC (Brekeke SIP server, party

SIP or, if you’re ambitious, even Asterisk) along with a PC SIP client,

such as Zoiper.

In a simplified call dialog, the UA would first REGISTER itself with a

SIP server, a challenge authentication would be given and credentials

exchanged. The server would authorize the endpoint by providing a

200 OK message, and the endpoint would be bound to the server and

ready to place a call. The user “Mary” would instruct the UA to place a

call to user “Steve.” The UA would encapsulate the requested location

in an INVITE message using a SIP uniform resource identifier (URI). A

SIP URI looks much like an email address (steve@destination.com),

and this would be sent to the proxy server. The proxy would look up

the location of the device by using the SIP registrar server and route

the request to the correct destination.

In the meantime, the proxy would update the caller with progress

messages: TRYING would indicate that the callee has not yet accepted

the INVITE, and RINGING would mean the callee is available and the

proxy is waiting for an answer. Once the call is answered a 200 OK is

sent that contains the media session information, including the agreed

upon vocoder and port locations to connect the media. At this point,

the proxy server may no longer be involved in the call. Conversation

can be enabled through a direct link between the caller and the callee

until the communication is terminated. (See Fig. 1)

Figure 1: A Simplified VoIP Call Dialog

Mary Proxy Server Steve

Invite

180 Ringing

200 OK

ACK

Invite

180 Ringing

200 OK

ACK

Conversation

BYE

200 OK

Ring

Answer

Hang Up

5				 Embedded VoIP for Commercial and Industrial Applications 	Freescale Semiconductor, Inc.

2.3 About RTP Media
RTP is a media transport mechanism that capitalizes on the speed

of UDP to transmit media sessions. Data can be encapsulated

inside the RTP packet in a number of standard formats based on the

vocoder negotiated by the SDP. In VoIP these are typically the ITU

standard G.7xx vocoder formats, and they are transmitted in packet-

size increments of 10 ms. Since RTP relies on UDP, it is a best-effort

protocol, meaning that re-transmit signaling does not occur, and if a

packet is lost, nothing is done at the transport layer to accommodate

it. Since RTP packets are relatively small and frequent, packet loss

over a reliable network is negligible. However, each packet does not

necessarily take the same network path, and packets may arrive at

their destination out of sequence. Therefore, the dynamic jitter buffer

arranges the packets in the correct order, monitors network latency

and manages the balance between slow packet reception and an

audible delay to the user.

2.4 VoIP Implementation Hurdles
While flexibility and openness are the SIP’s core strengths, they

can also be drawbacks. The RFCs very clearly define how certain

tasks, such as registration, invites and basic call flows, need to be

transacted. However, more complex call flows, such as broadcasts,

conferences, transfers and even some ringback or reinvite functions,

can be handled in multiple ways, requiring varying amounts of

interaction between the endpoint and the server. The complexity issues

are related to system interoperability. Simple call flows are usually not

a problem, but more advanced call flows, features and services may

not work across all infrastructure equipment. For device manufacturers

that control the end-to-end system, such as a carrier, this is generally

not an issue. However, for equipment installers that have multiple sites,

each with an existing VoIP infrastructure, this can create a software

management and interoperability nightmare.

A second issue with traditional VoIP is how the business model for

licensing the technology is created. The traditional model targets mass

market device manufacturers—a signaling stack port is licensed from

one vendor, a vocoder port or audio subsystem is licensed from a

second, and then the integration team brings the components together,

writes a master application, tests and debugs the system and takes

the product to market. This model ensures high-quality components

and provides a direct channel of support, but it relies on the expertise

of the integration team to guarantee a robust, interoperable solution,

and the up-front license terms can be prohibitive.

Reacting to the rapid acceptance of open source technology, this

model is changing, and signaling libraries and telephony applications

are now publicly available. This is not the case for well-optimized or

specialty vocoders that are required by industrial and commercial

applications. The licenses for audio subsystems can exceed $50,000

(USD) per product in addition to runtime royalties.

It’s also important to remember that VoIP is real-time. It can’t be

buffered like video media, and it can’t retry like Web data. Because

of this determinism, it’s critical to consider the embedded system as

a whole. For example, say at the very moment an occupant answers

a door-access intercom call the DHCP lease for the device expires.

Does the call end? Does the device renegotiate the lease? Does the

interface get restarted, or does it even need to be? The product as a

whole has to be designed to consider the potentially fatal impacts of

related systems. DHCP, NTP, IPtables, routing, DNS and others are all

necessary components of a complete product, but how they impact

the rest of the system is dependant on the implementation.

2.5 Device Management and Other Considerations
In traditional telephony equipment, the server manages all the

endpoints. An administrator logs onto the server, selects the device

node they want to modify and changes its profile. With today’s VoIP

systems there is little provisioning and management cooperation

between the SIP server and the endpoint. In addition to the base

telephony setup, including unique account information, rules and

restrictions, it is necessary to consider all other system requirements

needed to support the application. These include network services,

firewalls, routing and DNS. These lead to complex configuration

requirements for each endpoint that could number in the hundreds or

thousands. For a practical deployment, local device management for

installers needs to co-exist with secure central management access for

ongoing system configuration and mass deployments.

3	 System Solution Overview
Several hardware and software components need to come together

to build a VoIP system. The hardware components need to be tightly

integrated to ensure clear software data paths. The hardware design

rules need to mitigate noise and provide adequate isolation between

analog and digital signals. A good reference design, along with a

well-architected software package, can provide the building blocks

around which the application can be developed. Building from a solid

base platform can reduce project risk and decrease time to market.

3.1 Core OS Considerations
Operating system requirements can vary dramatically, depending on the

end application. Simple applications can benefit from a compact real-

time scheduler or a single-threaded monolithic deployment that doesn’t

require an OS. From an architecture standpoint, these models can be

ideal solutions for media applications because they are inherently hard

real-time systems. However, this type of architecture generally lacks

protocol support and commonly available drivers. Scalability can also

be a consideration, meaning that heavy software modifications may be

required to enable different features or to target an alternative market

niche. Developers may also have to deal with proprietary code, or tools

may have limited capability or heavy license fees.

Linux® is a mature open source OS that offers a number of advantages,

including a plethora of kernel services and file systems, plus broad

compatibility with industry standards for security, networking and

6				 Embedded VoIP for Commercial and Industrial Applications 	Freescale Semiconductor, Inc.

peripheral devices. This helps ensure product scalability, allowing the

OS to act as an abstraction layer that can enable the portability of

applications, from low-cost processors suitable for simple endpoints

to sophisticated high-end devices targeted at server-class equipment.

In addition, most semiconductor companies offer a complete Linux

distribution optimized for their products.

However, the open source solutions are not without their shortcomings.

Linux and µClinux™ need software priority scheduling to ensure that a

critical task is not given a lower priority than a non-critical task on the

system. Improper schedule priorities can lead to dropped packets and

latency issues.

3.2 The SIP Stacks
In a simplified form, a SIP network generally consists of various

endpoints, such as handsets, intercom devices or media terminals.

These devices form a network by interconnecting with each other

through a server or by directly using a peer-to-peer capability. The

server itself may or may not be interconnected over a private or public

network to other SIP servers.

3.3 Endpoint Software Stack
Endpoints generally represent the user experience. They are the

tactile product we interact with, like the steering wheel, throttle

or brake pedal in a car. Endpoints rely on the coexistence of two

user agent functions—the user agent client (UAC) and server (UAS).

Both the client and server act independently based on the SIP dialog.

For example, when placing a call from an endpoint, the UAC sends

a request to the server and waits for a response. This is a typical

client/server interaction. Turning this around and creating a call to an

endpoint will result in a role reversal where the UAC is the one receiving

and responding to messages. It’s this dual role client/server nature that

gives SIP its enhanced flexibility and peer-to-peer capability.

3.4 SIP Server Infrastructure
SIP server infrastructure is responsible for managing the endpoint

status, processing messages, responding to requests and supplying

routing information. Unlike an embedded SIP endpoint, the server

infrastructure generally resides on a much more powerful system,

such as a PC or communications application server. To help with

these functions, the system is broken down into two main server

components—the proxy and the registrar server. Since SIP is a

peer-to-peer protocol, a server infrastructure is actually not required

(SIP endpoints can quite happily chat with each other directly), but

each server element does provide additional functionality, enhancing

the capability of the system as a whole. It’s important to note that both

the proxy and registrar server may exist on the same machine or within

the same software package.

•	 The SIP proxy plays the role of traffic controller and directs

requests and responses to the correct SIP entity. It does this by

interpreting the SIP message headers, rewriting them as necessary

and forwarding the message to the destination. SIP proxies can

act like a client or a server, depending on the message. SIP

endpoints can communicate directly with one another. However,

using a proxy means that each endpoint doesn’t need to know

every other SIP element on the network. Instead, they have a

centralized way to access each other.

•	 The SIP registrar server maintains database entries that contain the

current location and credentials for each endpoint. These endpoints

can authenticate with the registrar server and record their location

and names for the proxy to look up on behalf of other endpoints

or SIP elements. With a registrar server, endpoints don’t need to

manage a database to track the locations of other endpoints. This

allows endpoints to be more dynamic yet still reachable.

3.5 Endpoint and Server Management Requirements
There are three initial device management issues that must be

considered before implementing an embedded VoIP communications

system for commercial and industrial applications:

•	 The local needs of an installer, who will need to set up the initial

configuration and validate that everything is working properly,

must be addressed

•	 There needs to be a method that will allow a less experienced

administrator to change configuration parameters

•	 There needs to be a way to efficiently update the software

When outlining the device management requirements, it’s important to

remember that many devices may exist in one location and there may

be many interconnected locations.

It’s also important to look at device management from the endpoint

perspective and consider its dynamic resource requirements, such as idle

state versus in call, keeping in mind the device’s overall capacity and any

affect that management may have on it. For example, invasive management

methods, such as SNMP, common among customer premises equipment

(CPE), force changes on the device with little consideration to the device’s

current status. It relies on the operator to view the system and ensure any

changes will not adversely affect the user experience.

This model works well in the carrier environment, where expert

operators regularly manage like devices. In the industrial space

this responsibility will probably be shared by three individuals: the

installer, who will set up the system, the administrator (likely IT

staff), who will manage it and the user, who will interact with it. This

shared responsibility means that every precaution needs to be taken

to ensure that the device will protect itself from error events and

misconfigurations and have a reliable way to easily recover. This also

means that authentication is an absolute requirement. The public

nature of most networks dictates that encryption should ensure that

access is granted only to controlled users and that any connections

are kept private.

7				 Embedded VoIP for Commercial and Industrial Applications 	Freescale Semiconductor, Inc.

4	 Audio Subsystem
The audio subsystem prerequisites can vary considerably, depending

on the application implementation and its requirements. For example,

a simple one-way audio loud-speaker used for paging may only require

a single vocoder combined with some form of half-duplex (one-way)

digital-to-analog audio conversion. More complex systems may need

to provide specific features:

•	 Background echo cancellation

•	 Audible status tones to indicate the progress of the call

•	 Full duplex audio support for emergency push-to-call panels

in elevators

•	 The ability to broadcast to hundreds of endpoints simultaneously

for fire and alarm systems

•	 The signaling capability of DTMF tones to maintain compatibility

with legacy equipment in control applications used to support

large equipment

•	 Half-duplex audio support for applications interoperating with

two-way radios

4.1 Voice Processing Subsystem
The audio subsystem includes primarily vocoders and echo canceller

modules, which have to be highly optimized in terms of CPU load

and memory usage. There are a number of vocoder standards

available with varying bit rates and voice quality. Selecting the correct

vocoders for a particular system depends on the application/system

requirements and system resource availability. The following section

defines vocoder standards used in commercial VoIP applications and

includes a quick reference table that summarizes and compares the

specifications of various vocoders.

•	 ITU-T G.711—specifies PCM MU-Law and A-Law encoding

for compressing speech at 8 KHz to 64 kbps. Appendix-II of

this specification defines the silence compression techniques,

such as voice activity detection (VAD) and comfort noise, to

reduce the average bit rate transmitted during the silence

intervals. Appendix-I of this specification details the packet loss

concealment (PLC) functionality. The PLC handles packet losses

that occur during the transmission over the data network.

•	 ITU-T G.726—is a waveform coder that works on the principle of

adaptive differential pulse code modulation (ADPCM) and is used

to compress speech at 8 KHz to 16, 24, 32 and 40 kbps. This

vocoder also supports silence compression techniques and PLC

•	 ITU-T G.729AB—is a low bit-rate vocoder that works on the

principle of conjugate structure algebraic code-excited linear

prediction (CD-ACELP) for compressing speech at 8 KHz to 8

kbps. It operates at 10 ms frames with a total algorithmic delay of

15 ms. Annex-A of this specification defines silence compression

techniques. This vocoder also supports PLC.

•	 ITU-T G.723.1—is a low-bit-rate dual-rate speech coder based

on the principle of multi-pulse maximum likelihood quantization

(MP-MLQ) and algebraic code-excited linear prediction (ACELP)

with a total algebraic delay of 37.5 ms. It compresses speech at 8

KHz to 5.3 or 6.3 kbps.

•	 iLBC—is a vocoder based on the principle of block independent

linear predictive coding (BI-LPC) that compresses speech at 8

KHz to 13.3 or 15.2 kbps.

•	 ITU-T G.722—is a wideband speech coder based on the

principle of UB-band adaptive differential pulse code modulation

(SB-ADPCM) with a total algorithmic delay of less than 1 ms. It

compresses speech at 16 KHz to 64, 56 and 48 kbps.

Table 2 summarizes the specifications of various vocoders.

Vocoder Bit Rate
(kbps) Frame Length Algorithm Algorithm

Delay (ms)

G.711 64 Any PCM 0.125

G.726 16, 24, 32, 40 Any ADPCM 1

G.729AB 8 10 ms CS-ACELP 15

G.723.1 5.3, 6.3 30 ms MP-MLQ
and ACELP 37.5

iLBC 13.3, 15.2 20 ms, 30 ms BI-LPC 20, 30

G.722 64, 56, 48 10 ms SB-ADPCM 10

4.2 Voice Quality
Some of the factors that affect the voice quality in a VoIP system are

described below.

•	 Bit rate: Normally, increasing the bit rate improves voice quality.

•	 Packet (frame loss): Packets may be dropped on an IP network

due to network congestion. Packet loss may be random or burst,

based on the network conditions. Voice quality dramatically

degrades as the packet loss increases. Packet loss concealment

algorithms are built as part of vocoder standards, using history

buffers to synthesize the speech for the lost frames.

•	 Network jitter: Normally, the packets are generated at regular

intervals (packetization period) at the transmitter end. However,

each packet experiences different delay while traversing the IP

network, depending on the network conditions. This variation in

the delay is called jitter. Jitter is alleviated using an adaptive jitter

buffer, in which a playout buffer is used to store the packets and

play them out in sequence. The downside of the jitter buffer is the

increased end-to-end delay.

•	 Echo: This can be in the form acoustic echo, which is due

to coupling between microphone and speaker, or it can be

electric (line) echo due to hybrid circuits, as in the case of

4-wire-to-2-wire conversion, which is required in VoIP gateways.

The echo is noticeable in VoIP systems due to higher end-to-end

delay. Acoustic echo cancellers and line echo cancellers are used

to cancel acoustic and electric echo respectively.

8				 Embedded VoIP for Commercial and Industrial Applications 	Freescale Semiconductor, Inc.

4.3 Voice Quality Measurement
There are essentially two methods for assessing voice quality:

subjective and objective. Subjective methods employ human

listeners to evaluate all aspects of voice quality. ITU-T P.800 defines

mean opinion score (MOS) as an important metric for subjective

determination of voice quality.

PESQ (perceptual evaluation of speech quality), defined by

ITU-T P.862, is an objective method for perceptual voice quality

measurement. PESQ uses a sensory model to compare the original

unprocessed signal with the degraded signal from the network.

The resulting quality score is comparable to the subjective MOS

that is measured according to P.800. PESQ takes into account the

different impairments, such as coding distortion, error, delay, packet

loss, etc. PESQ scores normally range from 1.0 (poor quality) to 4.5

(high quality).

Table 3 provides the typical PESQ values for various vocoders.

Vocoder PESQ

G.711 4.3–4.4

G.726 4.0–4.2

G.729AB 3.5–3.7

G.723.1 3.3–3.5

iLBC 3.5–3.7

G.722 4.0–4.2

4.4 Selecting a Vocoder
Vocoder selection in any VoIP system depends primarily on the

following factors.

•	 Voice quality

•	 Network bandwidth

•	 Algorithm delay

•	 CPU load

Table 4 provides the characteristics of different vocoders with respect

to the above factors:

Vocoder Voice
Quality Bandwidth Algorithm

Delay CPU Load

G.711 High High Low Low

G.726 Good Medium Low Low

G.729AB Medium Low High High

G.723.1 Low Low High High

iLBC Low Low High High

G.722 High High Low Low

4.5 Echo Canceller
Echo cancellers are required for VoIP systems because of high one-

way end-to-end delay. When this delay is short (less than 25 ms), the

echo is not noticeable. However, since the end-to-end delay is usually

higher in a VoIP system, echo is one its major drawbacks.

Echo cancellers must perform the following general functions:

•	 Cancel the echo as quickly as possible at the beginning of the call

•	 Dynamically track the echo path changes

•	 Provide robust double-talk detection to avoid undesirable breaks

in voice communications when both ends are active

•	 Operate well in the presence of background noise

An echo canceller uses an adaptive filtering algorithm to predict the

echo path then generates a close replica of that path and subtracts it

from the signal. The result is an echo-free signal.

Normally, there are two types of echo cancellers:

•	 Line echo cancellers (LECs) are designed to cancel echoes

resulting from the reflections in the telephone hybrid circuit. There

are generally one or two noticeable reflections from the hybrid,

which are usually delayed by less than 32 ms. Normally, the echo

characteristics do not change frequently, and therefore the LEC

design is simpler than the acoustic echo canceller.

•	 Acoustic echo cancellers (AECs) are designed to cancel

the echo that results from the acoustic coupling between the

microphone and speaker. The acoustic echo cancellation process

is considerably more complex than line echo cancellation, as

outlined below:

	 In general, the impulse response of the acoustic path is longer

	 Acoustic echo path is non-stationary because of the dynamic

acoustic properties of any given physical space

	 Acoustic echo includes both linear echo from the acoustic

signal and non-linear echo from speaker non-linearity

	 Acoustic echo is influenced by the design of the enclosure

Due to these complex acoustic path characteristics, it is important

to make key parameters, such as gain, echo tail length, buffer offset

and non-linear processing elements, easily adjustable by the system

integrators so they can be optimized for a particular application.

9				 Embedded VoIP for Commercial and Industrial Applications 	Freescale Semiconductor, Inc.

5	 Freescale ColdFire MCF53281
Embedded VoIP Solution

5.1 The ColdFire Advantage
Most low- to mid-range 32-bit processors do not have sufficient

performance for audio (voice) processing. And most low- to

mid-range DSPs do not have enough control capability to both

control an application and manage a network connection. This

generally necessitates the use of both a 32-bit CPU and a DSP

for VoIP applications.

Most of Freescale’s ColdFire embedded processors include an

enhanced multiply accumulate unit (EMAC), which enables them to

process VoIP audio and control the VoIP application as well as manage

a network connection. Using a ColdFire processor instead of a CPU/

DSP combo results in a simpler system with a lower total cost.

In addition to the EMAC, ColdFire processors, such as the MCF53281

device, include a rich on-chip peripheral set that is suitable for various

VoIP applications. The MCF53281 MCU provides both 10/100 Ethernet

and SSI synchronous serial support, which are required for high-speed

digital audio communication between a host processor and a D/A or

A/D codec. External peripheral devices, such as keypad scanners, I/O

controllers or EEPROMs, can be connected to the host processor via

QSPI or I2C. Interrupts, GPI/O and serial UARTS are also available.

What’s more, the MCF53281 controller contains an SVGA LCD

controller, which makes it ideal for touch panel applications.

Figure 2: MC53281 Block Diagram

5.2 MCF53281 Software Bundle
The Freescale MCF53281 software bundle includes all the components

required to deploy a full-featured VoIP system for voice-enabled

industrial applications. The solution uses a hybrid of open source

and proprietary elements that include complete VoIP and device

management software with APIs and example applications that can be

modified or used as is. These include:

•	 uClinux 2.6.21 or greater (drivers, kernel, userland applications

collection, network services)

•	 Arcturus Management Middleware (complete device management,

secure Web user interface [Web UI] and remote provisioning)

•	 Arcturus voice and media middleware

•	 Encore software voice processing subsystem

The software licensing costs associated with the proprietary

components are bundled together as part of the MCF53281 VoIP

processor cost. This means that there are no additional fees to pay

for access to the software and no prohibitive NRE charges. The

MCF53281KIT can be used as a reference platform to develop a

hardware product or the MCF53281 VoIP modules can be used for

prototype and small run applications. Freescale and Arcturus provide

on-going training, a dedicated support site and direct e-mail support.

5.3 MCF53281 Management Middleware and
Configuration Tools
The management middleware provided as part of the MCF53281

package hooks into the processes, services and interfaces internal

to the Linux 2.6 kernel sysfs as well as the drivers, scripts and

applications within the system. Through these hooks the middleware

can change the configuration or report settings/statistics of any process,

service or interface. The system relies on three database realms:

•	 A FACTORY database that contains the default values of the

device, including serial number, MAC address and other default

recoverable state information

•	 A PERSISTENT database that contains account information,

personal settings and other user configured device parameters

•	 A RUNTIME database that is resident in RAM only and contains all

real-time (current) device configuration settings, statistics, packet

counters, interface information and others

The management middleware API talks directly to the database

realms, which, in turn, signal a change to the management engine.

The management engine contains a system of dependencies that

are structured to take a macro view of the device and implement

changes in a controlled way so as not to adversely affect the

operation of the device.

uClinux

MiddleWare
SIP

Vocoders

VoIP Software

BDM PLL GPIO JTAG

SVGA LCD
Controller

4-ch., 32-bit
Timer

USB
h/d/otg UART

16-ch.
DMA

4-ch.
PWM

USB
Host UART

SSI I2C QSPI UART

10/100
FEC

CAN

16K
Unified
Cache

32K SRAM

V3
ColdFire®

Core

System
Bus

Controller

DDR/SDR
SDRAM

Controller
and

Chip Selects

D
M

A

E
M

A
C

10				 Embedded VoIP for Commercial and Industrial Applications 	Freescale Semiconductor, Inc.

Figure 3: Management Stack Diagram

A practical example of this is to consider the DHCP leasing reference
from earlier in this paper. Under middleware control, if a call is in
progress, the middleware engine will change the mode of the DHCP
client to prevent the endpoint from losing its lease. At completion
of the call the middleware engine will return the DHCP mode back
to normal and the lease will be renegotiated if required. This control
effectively delays the renegotiation and prevents the interface from
going down, which would effectively kill the media session. While this
is a fairly simplistic example, similar controls are provided for telephony
and other network settings. The management API itself uses a simple
set/get architecture compatible with SNMP. All database values are
stored using the industry standard management information base
(ASN1 MIB II) compliant format.

The MCF53281 package also includes tools that make use of the
middleware API and implement various methods of device management,
including secure remote provisioning and a Web-based user interface.

The Web UI is a feature-rich SSL-enabled method of configuring the
device locally or remotely. It has direct access to the API and includes
set up wizards, network tables and packet counters as well as diagnostic
tools and feature, account and administrative settings. Since the Web UI
is HTML, the source can easily be viewed or modified as required.

In addition to the Web UI tool, a remote provisioning tool is provided to
help manage up to several thousand devices. This tool uses the unique
credentials inside the device (username, passwords, serial number,
firmware version) to authenticate with a remote Web server and
establish an encrypted SSL connection for file transfer. The file itself
is a script that can be executed through the management API and has
access to the same resources as any other management tool.

The provisioning file may contain just enough information to set the
device up generically or to provide a unique device profile or reference
to obtain updated firmware. Since the file is obtained through an
HTTPS connection, a fairly common Web server can be used as the
provisioning infrastructure, which provides cost-effective flexibility and
a more reliable transport than TFTP and other systems. The server
itself can serve static files or exploit the unique credentials to auto-
generate dynamic provisioning files on the fly.

5.4 Other Management Tools and Services
Two other management tools are provided—a command line client that

uses the simple set/get management middleware API and a collection

of MDNS-enabled applications that are compatible with Zeroconf

requirements, discovery and configuration. These applications include

DHCP, with the capability for server INFORM functions to support IP

address retention, and advanced fall back modes for lease failure.

Discovery is used to automatically find a provisioning server and to

easily find the Web UI (using a Bonjour-enabled browser).

5.5 Firmware Management
Firmware upgrades are handled through the Web user interfaces or the

provisioning system. Several local strategies are used on the device

to structure and manage firmware in order to optimize updates and

increase robustness.

At the lowest level of the middleware is a sophisticated bootloader

that fully supports the flash device. It can read, write and erase flash

as well as support persistent objects, environment variables and a

garbage collection algorithm for wear leveling. The bootloader flash

support has the ability to define partition information internal to the

flash file system. The partitions are structured in such as way as to

allow for mutually exclusive kernel, Web and rootfs images. This has

two benefits. First it allows targeted firmware updates, which minimizes

failures due to down time and network traffic. Second, it provides the

capacity for the bootloader to manage multiple kernel and userland

images, thus creating a fallback framework to recover from firmware

failure or other events. This framework is particularly useful for remote

devices or for those in difficult to access locations.

As the device boots, the bootloader decompresses the CRAMFS kernel

image into RAM and jumps to its location to execute. The bootloader

passes a kernel argument that defines the rootfs start address.

The processor’s watchdog control and reset state information along

with the bootloader’s partitioning capability provide all the necessary

components needed to arbitrate among multiple firmware images based

on various failure modes. While this model of firmware recovery does

require additional flash resources to store the redundant partitions, it

provides better flexibility and remains more economical than storing

a number of monolithic images. For applications in health care or

industrial control where power fluctuations and external stimuli are

common, the additional flash is certainly justified, considering how

much it adds to the robustness of a critical recovery system.

Command Line Secure
Provisioning SNMP

Voice Response XML HTTP/S

Management API

Configuration Engine

OS

Firmware Management

Process Interfaces Services Capabilities

Fa
ct

or
y

D
at

ab
as

e

P
er

si
st

en
t

D
at

ab
as

e

R
un

 T
im

e
D

at
ab

as
e

11				 Embedded VoIP for Commercial and Industrial Applications 	Freescale Semiconductor, Inc.

5.6 MCF53281 Voice and Media Middleware
The voice and media middleware consists of a signaling stack

that uses the open library components oSIP and oRTP. A runtime

configurable signaling abstraction layer resides above the libraries

to maintain call flow compatibility across different infrastructures.

This allows deployment of a solution that is interoperable with SIP

equipment from different vendors without having to manage various

firmware loads. The telephony application is a multi-threaded,

multi-context application that contains the internal logic for call

handling, state information, voice response and outgoing call rules.

Figure 4: VoIP Stack Diagram

The phone application includes a loadable digit map that defines

how the system should handle special feature codes, such as *70

(the North American standard to disable call waiting). It also contains

logic that determines when the user’s input should be packaged as an

INVITE and sent on the network, such as the standard NANPA (North

American Number Plan Association) 11-digit dialing (1-xxx-xxx-xxxx).

All user configurable settings are available through the management

middleware, including account information, vocoder preferences,

speed dial settings, intercom and IVR. The negotiation, loading and

unloading of the audio path, signaling conformance, device driver and

vocoder are handled transparently by the middleware. Call control and

command operation are enabled through a simple API.

There are two parts to the voice middleware API—a daemon

application called atemul and a reference application called atcmd.

The atemul application opens a channel into the middleware telephony

application, and atcmd creates a command line interface. The interface

uses a familiar AT command set similar to a modem. Source code is

provided to help integrate atcmd with the application, or it can be used

as is and attached to any interface to receive commands directly from

an external source. An interface is provided through the voice and

media middleware API into the management middleware to change

a subset of telephony settings, such as volume controls, and obtain

device information directly from the telephony application.

In addition to the telephony application, a number of related

components are integrated to support the full duplex voice operation.

These include NAT traversal using NTP client and server for accurate

time stamping, VLAN for traffic shaping, STUN and QoS. The

configurable settings for these applications are available via the

management middleware database API.

The voice and media middleware supports most standard telephony

features, such as do not disturb, call waiting, disable call waiting,

caller-ID block, reject anonymous calls and attended and unattended

call transfers with ring back support. To help with system development

and configuration, a simple interactive voice response (IVR) is tied into

the management middleware. This system uses telephony API calls to

announce the device’s IP address, phone number, last incoming call

and other simple functions, such as play file command. This feature is

particularly useful when needing to learn the IP address of the internal

configuration Web server. By default, it is also programmed to respond

to an external pushbutton that is connected via GPIO.

To help develop emergency assistance buttons, health care monitoring

or other push-to-call applications, the voice middleware has two

additional predefined GPIO signals that correspond to speed dial

settings 1# and 2#, configurable from the Web user interface. This

makes a push-to-call demo possible out-of-the-box by assigning a

valid SIP account to the device and simply configuring the speed dials.

In addition to point-to-point communication, the middleware supports

one-to-many modes of operation suitable for overhead paging,

announcements or intercom functions. The software utilizes a

subscribe-type architecture where endpoints are configured to send

and/or listen to one of up to 99 broadcast audio groups. The audio

streams are carried over multicast UDP and use an independent

command packet to set up, maintain and terminate the session. The

session is transparently encoded, packetized, transmitted and decoded

as part of the middleware, which is designed to operate alongside any

SIP infrastructure and co-exist with an endpoint configuration.

Telephony Application/API

Signaling Overlays

Audio Processing

Network

In
te

rf
ac

e
to

M
an

ag
em

en
t

M
id

d
le

w
ar

e

Tones/Files Vocoders

RTCPRTPSIP UA SDP

STUN QoS Jitter Buffer

12				 Embedded VoIP for Commercial and Industrial Applications 	Freescale Semiconductor, Inc.

6	 Summary
In order to meet the needs of next-generation products, it is critical

to give the tools of innovation to the developers who innovate. This

may seem straightforward enough, but in the traditional model for

accessing VoIP software, the core components have been isolated

by complicated business models, burdensome licensing costs and

protocols that require specialized expertise. While this model may not

be prohibitive for large OEMs and telecoms, it has stymied adoption

in commercial and industrial markets where two-way digital voice

communications can dramatically impact the way they do business.

Patient/nurse intercom stations no longer need to be hard wired

to one fully staffed central desk, and industrial VoIP can enable

health care monitoring to extend into homes or mobile applications.

Building systems can benefit from consolidated infrastructures and

gain the robustness that networks and protocols provide. Fast-serve

restaurants can offer multi-language support for their drive-through

customers via a centralized contact center. And operators who work

in sensitive areas or with specialized equipment can have direct access

to dedicated voice support to address glitches before they result in

costly down time.

While no single solution will ever meet the needs of all applications, a

simplified business model with access to the core software building

blocks, board level hardware and dedicated support resources will help

tear down the barriers for developing voice products in commercial

and industrial applications.

13				 Embedded VoIP for Commercial and Industrial Applications 	Freescale Semiconductor, Inc.

Home Page:
www.freescale.com

e-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
1-800-521-6274
480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor
Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale
Semiconductor products. There are no express or implied copyright license granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein.
Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products
for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application
or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters which may be provided in Freescale Semiconductor
data sheets and/or specifications can and do vary in different applications and actual performance may vary
over time. All operating parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor
the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create
a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor
products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Freescale Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Freescale and the Freescale logo are trademarks or registered trademarks of Freescale Semiconductor, Inc.
in the U.S. and other countries. All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2008.
Document Number: VOIPWP
REV 0

