
Searching for Lyapunov Functions using
Genetic Programming

Carl Banks
Virginia Polytechnic Institute and State University, Blacksburg, VA 24060

There is currently no generally-applicable way to find Lyapunov functions for stable
nonlinear systems in a reasonable amount of time. However, genetic programming is
exciting, new possibility. Genetic programming is a variation of genetic algorithms where
the objective space is a space of heirarchial tree structures. The tree structures, among
other things, can represnt represent almost any mathematical expression. I have imple-
mented a genetic programming algorithm, in Mathematica, which searches for a Lyapunov
function of a given system, where the tree structures represent potential Lyapunov func-
tions. The implementation evaluates the “Lyapunovness” of the functions by testing the
Lyapunov conditions (V (x) > 0 and V̇ (x) ≤ 0) at many random points. The implementa-
tion was successful somewhat in finding Lypunov functions for simple, two-dimensional
systems.

Introduction

Lyapunov functions are of fundamental importance
in the study of nonlinear systems. Not only are Lya-
punov function useful in proving stability of nonlinear
systems, they are an important part of certain non-
linear control design methods, including backstepping
and sliding mode.

Unfortunately, there are no general methods for
finding a Lyapunov function for a given system. In
this report, I apply genetic programming, a heuristic
optimization technique that is a variation of genetic al-
gorithms where the objective vectors can be complex
mathematical expressions, to the general Lyapunov-
finding problem.

Genetic programming is a relatively new field, first
introduced by Koza in 19921. Ref. 1 remains the most
comprehensive introduction and reference for genetic
programming. As yet, there is very little literature on
the application of genetic programming to nonlinear
dynamics problems. Of the few papers that examine
this, most focused on system identification2 or con-
troller design by searching for a control law3.

This report first reviews genetic algorithms and ge-
netic programming, before examining the Lyapunov
search algorithm.

Genetic Algorithms

A genetic algorithm is a heuristic optimization
method based on the idea of breeding∗. A dog breeder

∗Some people, including Koza1, compare genetic algorithms
to natural selection (evolution in nature) as opposed to breeding.
Normally, this is a poor metaphor, because natural selection, un-
like breeding and genetic algorithms, has no defined goal. Some
odd variants of genetic algorithms, however, do mimic natu-
ral selection: the individuals are given the ability to reproduce
themselves and are put into an environment where hopefully
individuals with the desired characteristics will survive.

will choose dogs with desirable characteristics (large-
ness, smallness, spottedness, quickness) to parent fu-
ture litters, but will spay or neuter dogs that exhibit
poor characteristics or are defective. In this way, the
population of dogs evolves towards a goal of having
desirable characteristics.

A genetic algorithm operates in the same way, ex-
cept that the individuals being bred are not dogs, but
objective vectors. The computer program breeds these
individual objective vectors to produce new individu-
als (i.e., new points in the objective space) in hope of
moving the population towards a desired optimum.

The basic procedure is this: the computer creates
a population of random individuals. The computer
then evaluates the fitness of each individual in the
population. Fitness is the objective function of the
optimization: it is a measure of how desirable the in-
dividual’s characteristics are. We want to maximize
fitness. So the computer selects the fittest individuals
from the population and applies genetic reproductive
operations (of which the two most common are called
crossover and mutation) to them to produce a new
population of individuals: the second generation. The
second generation is evaluated and bred again to pro-
duce the third generation, and so on. The process con-
tinues until it meets a termination criterion: perhaps
it has produced a perfect individual, or has reached a
maximum number of generations.

The two most common genetic operations are
crossover and mutation. Crossover takes two individ-
uals and exchanges some of their variables to produce
two children. It is common to choose a single point
in the vector, and have the two vectors exchange all
variables with a higher index. This is similar to re-
combination in biology, where pairs chromosomes swap
strands of DNA. Fig. 1(a) illustrates crossover.

Mutation takes a single individual and randomly
changes one or more variables in it. It is a mechanism

1 of 13



(a)

(b)

Fig. 1 Crossover (a) and Mutation (b) Operations

to ensure that certain values do not become extinct
from a population. (In a nonlinear objective function,
a certain value of a certain variable may not be helpful
at first, and could die out; but it might be important
near the optimum. Hence the need to restore it with
mutation.) Fig. 1(b) illustrates mutation.

Genetic algorithms perform poorly compared to
most numerical algorithms: they are more expensive
computationally, and may not converge to an opti-
mum. For purely numerical problems, it is almost
always better to use some other method.

However, unlike numerical algorithms, the objective
space of a genetic algorithm can span things other than
numbers. Anything that can be represented digitally
can be part of the objective space of a genetic algo-
rithm: bits, integers, discrete numbers, strings of text,
web pages, images, current stock prices, configuration
layouts, baklava recipes, Shakespearean quotations,
anagram generator programs, etc. This makes ge-
netic algorithms very suitable for problems such as
configuration optimization problems, where the differ-
ent configurations cannot easily be captured in a single
real number.

It also means genetic algorithms are useful when the
objective space is not an orthogonal vector space, but a
space of objects spanned by hierarchal tree structures.

Genetic Programming
Genetic programming is a variation of genetic al-

gorithms where the individuals are tree-shaped struc-
tures (trees for short) instead of flat vectors. Genetic
programming is so-called because, in early demonstra-
tions of the technique1, the trees represented simple
computer programs∗. However, trees can represent

∗Any computer program can be represented hierarchally. In
fact, modern compilers translate the source code into a tree

sin

x

+

+

arctanh

^

x 0.4 x 1

2

2

Fig. 2 Diagram of a tree representing Expression 1

any hierarchal data; they do not have to represent a
computer program.

Because mathematical expressions are hierarchal in
nature, a tree is ideal for storing arbitrary single-
valued mathematical expressions, For example, con-
sider Expression 1:

2 sin(x + 0.4) + arctanh(x− 1)2 (1)

Fig. 2 depicts this expression graphed as a tree. Each
box in the figure is called a node. The shaded nodes
in Fig. 2, from which spring no subtrees, are called
terminal nodes, or leaves; they can be thought of as
functions with no arguments. The unshaded nodes,
from which subtrees do spring, are called nonterminal
nodes, or branches; they represent functions of one or
more arguments. Graphed this way, one can visual-
ize how the computer performs genetic operations on
trees.

Fig. 3 diagrams a crossover operation. Crossover
operates on two parent trees and results in two child
trees. In crossover, a node is randomly chosen in each
parent tree; this node is the crossover point. Then, the
parents swap subtrees at the crossover points, forming
two new trees. In Fig. 3, the subtrees to be crossed
are shaded. The figure depicts Expression 1 crossing
with 2ex−4, where the subtrees arctanh(x − 1)2 and
x− 4 are exchanged to yield 2 sin(x + 0.4) + x− 4 and
2earctanh(x−1)2 .

Fig. 4 diagrams a mutation operation. Mutation
operates on only one tree. As in crossover, a ran-
dom node (called the mutation point) is selected.
Then, a completely random subtree replaces the sub-
tree at the mutation point. Figure 4 shows the subtree
4/5x replacinh sin(x + 0.4) in Expression 1, yielding
2(4/5x) + arctanh(x− 1)2.

structure before operating on it, a process called parsing. The
tree structures in genetic programming are often called parse
trees, because, although they are not formed by parsing, they
look like the parse trees used by compilers.

2 of 13



x

x

sin

x

2

+

+

x 0.4

arctanh

arctanh

^

^

2

2

1

1

x

2

x

x

exp

4

4
sin

x

2

+

+

x 0.4

x

2 exp

+

+

Fig. 3 Diagram of a crossover operation.

x

2

+

arctanh

^

2

x 1

x

2

+

arctanh

^

2

x 1

x

4 5

/ x

x 0.4

+

sin

Fig. 4 Diagram of a mutation operation.

3 of 13



Fitness
We want to apply the technique of genetic pro-

gramming to finding Lyapunov functions, where the
tree structures represent potential Lyapunov func-
tions. The population will evolve (we hope) until a
Lyapunov function is produced (assuming the system
is stable). But like most optimization methods, the
hard part of genetic programming is not the genetic
programming itself, but the evaluation of the objec-
tive function, i.e., the fitness.

The fitness of a potential Lyapunov function is a
measure of its “Lyapunovness,” that is, how well the
function satisfies the criteria for a Lyapunov func-
tion. A continuously differentiable, real-valued func-
tion V (x), where x ∈ <n, is is a Lyapunov function of
a system ẋ = f(x) that is stable at the origin if the
following criteria hold for some domain D containing
the origin:

1. V (0) = 0

2. V (x) > 0 ∀ x ∈ D − {0}

3. V̇ (x) ≤ 0 ∀ x ∈ D

Should V (0) be defined but not equal zero, it is easy
enough to define a function V̂ (x) = V (x)− V (0) that
does satisfy the first criterion. (If V (0) is not defined,
then V (x) is not a Lyapunov function and not likely
to be close. The fitness of such a function is zero.)
Henceforth we assume, when evaluating the other two
criteria, that V (x) has been corrected by subtracting
V (0).

Criteria 2 and 3 are applicable to the entire domain.
A function may satisfy one or both of these criteria in
some places, but not others. This suggests a possible
measure of fitness: the percentage of the domain D
where these criteria hold. More specifically, the fitness
could be the percentage of the domain satisfying Cri-
terion 2 plus the percentage of the domain satisfying
Criterion 3.

Unfortunately, determining this measure of fitness
exactly is not easy for a computer to do. The most
obvious way to approximate the fitness is numerically:
evaluate V (x) and V̇ (x) at many points, and take the
ratio of points satisfying the criteria as an approxima-
tion to the fitness. The many points could be a grid
of points covering the domain D. Or, the points could
be randomly chosen.

For this paper, I have implemented this fitness ap-
proximation using random points.

Lyapunov Search using Genetic
Programming

And so, having examined the genetic programming,
and how to measure fitness, we formulate an algorithm
to search for a Lyapunov function. I have implemented
this algorithm in Mathematica.

The input to the genetic programming procedure
is the following: the equations of motion of the sys-
tem, f(x), the list of state variables x1, x2, . . ., the
domain of interest D (for my implementation, D is
given by limits on the state variables), a list of math-
ematical functions that will be used to construct the
initial random population (called the nonterminal set),
and certain genetic programming parameters. The ge-
netic programming parameters include the population
size, the maximum number of generations to run, the
number of test points, and other minor parameters.

The first task is to generate a random population.
This requires two sets of buildings blocks: the ter-
minal and nonterminal sets. The terminal set is the
set of terminal nodes that can be used in a random
function. In my implementation, this set includes the
state variables x1 through xn, and the integers ranging
from −10 to 10. I have found it very beneficial to also
include the components of the right-hand-side of the
equations of motion: f1(x) through fn(x). (Although
the equations of motion can be complex expressions,
the components always remain a single node in the
tree; crossover cannot break them up.) Thus, the ter-
minal set for my implementation is:

T = {x1, x2, . . . , xn, f1(x), f2(x), . . . , fn(x),
−10,−9, . . . , 9, 10}

Although it might be beneficial to be able to adjust
this set, in my implementation this is not currently
possible.

The nonterminal set is the list of function input by
the user. The user should almost always include the
four arithmetic operations: addition, subtraction, mul-
tiplication, division. The square function (·2) is often
useful because of the requirement that the Lyapunov
function be positive definite. Depending on the func-
tion, other operations might be included. For example,
for the damped pendulum, the sine and cosine func-
tions might be useful because the sine appears in the
equations of motion. The damped pendulum nonter-
minal set might look like this:

N = {+,−,×,÷, ·2, sin, cos}

There are limitless possibilities in choosing the nonter-
minal set, and deciding which functions to include is
an art. Too many unnecessary functions decreases per-
formance; however, not including a really useful one is
crippling.

Using these two sets, the implementation generates
trees recursively: the Mathematica function creating
the random tree chooses a node from one of the sets
randomly, and if the node is nonterminal, calls itself
to generate subtrees for each of the arguments. To
generate trees of manageable size (for it is easy to see
that this can create very large functions), the chance of
selecting a nonterminal node decreases exponentially
with the depth of the recursion.

4 of 13



Then, having generated the population, the im-
plementation measures the fitness of each individual.
First, it evaluates each individual with all states set
to zero. The result, if there is one, is to be subtracted
from the individual when it is tested for positive defi-
niteness. Individuals for which this result is undefined
have their fitness set to zero.

The implementation then approximates the fitness
of the rest of the individuals. In both cases, it tests a
random set of points for satisfaction of the two cri-
teria V (x) > 0 and V̇ (x) = (∂V/∂x)T f(x) ≤ 0.
(Incidentally, because Mathematica can differentiate
symbolically, it can evaluate V̇ (x) without using finite
differences.) The approximate fitness is the ratio of
points satisfying V (x) > 0 plus the ratio of points sat-
isfying V̇ (x) ≤ 0, divided by two.

The number of points tested depends on how well
the points satisfy the criteria. The implementation
first tests a set of random points for one criterion. If
this ratio is less than 1/2, then the ratio is accepted
as the approximation. Otherwise, it tests another set
of points. If less than 3/4 of the points in both sets
satisfy the criterion, then that ratio it is accepted as
the approximation. Otherwise a third set is tested.
If less than 7/8 of all the points satisfy the criterion,
that ratio is accepted at the approximation. Other-
wise a fourth set is tested, and so on. This method
frees the computer from wasting time on the least fit
individuals, while giving precise results for the most
fit individuals. The number of random points per set,
and maximum number of sets, are settable parameters.

Having measured each individual’s fitness, the ge-
netic programming procedure breeds a new popula-
tion. To breed a fitter population, the procedure
tends to choose individuals with higher fitness, but
also allows some less-than-optimal individuals to breed
to retain genetic diversity. My implementation uses
tournament selection, where it randomly selects some
number (a settable parameter) of individuals. Of those
selected, the individual with the highest fitness gets to
breed.

The size of the new population is the same as the
size of the original one∗. The implementation creates
most of the individuals in the new population by cross-
ing two parents, both of whom have been selected by
tournament. A small percentage of new individuals
undergo mutation after crossover. The mutation rate
is usually very small, less than two percent, and is a
settable parameter.

Some individuals in the new population are not
formed by crossover, but are instead a copy of a single
parent (but still subject to mutation). The purpose

∗I want to try an initial population somewhat larger than
the regular population size. This is because most of the initial
population have a fitness of zero, and thus the first generation is
mostly the offspring of a small number of individuals. A larger
initial population could increase the genetic diversity.

of such asexual reproduction is to save the population
from serious regression in the case of an unluckily bred
generation. A small percentage of individuals in the
new population is formed this way. The percentage
should be small number, around ten percent, and it is
a settable parameter.

After the generation of the new population, the algo-
rithm loops back to measuring its fitness. It continues
looping, and hopefully finding better individuals with
each generation, until some termination criterion is
met. My implementation has two termination crite-
ria. One is when a maximum number of generations,
specified by the user, has been run. The other is the
appearance of an individual with a perfect score: all
of the points tested satisfy the Lyapunov criteria. The
procedure stops and returns the fittest individual when
termination occurs.

Because genetic programming is a heuristic method,
there is no guarantee that it will find a true Lyapunov
function. This problem is deepened by the fitness mea-
sure not being completely accurate. We hope that the
problem is not serious.

Testing and Results
I applied my genetic programming implementation

to three different nonlinear systems: a simple poly-
nomial model, a damped pendulum, and a nonlinear
system containing the tangent function. All three were
two-dimensional, so that the returned function could
be plotted.

The parameter settings used in the tests were as
follows:

• The generation size varied. It was usually 500;
but for some runs was 1000, others 200.

• The maximum number of generations was 20.

• The number of random points in a test set was
20. The maximum number of sets that could be
tested was 10, making the maximum number of
random points tested 200.

• The number of individuals selected for the tour-
nament was usually 4, although it was 2 in a few
runs.

• 90 percent of crossovers happen at a nonterminal
node.

• The mutation rate was 2 percent.

• For each generation, 10 percent of the individu-
als are direct copies of one parent in the previous
generation; the other 90 percent are formed by
crossover.

The results, in general, were good, if uncertain.
There were more false positives that I would have liked.
In most cases, convergence was faster than I expected.

5 of 13



The functions produced were sometimes too com-
plicated to analyse; therefore, many of the results are
graphed. Figures 5–10 show graphs of some of the
functions produced by the tests. Each figure shows
four graphs. In each figure, the graph on the top-left
plots the returned function V (x), which is hopefully a
Lyapunov function. Next to it, the graph on the top-
right plots min(V (x), 0); this plot makes it easy to see
where V (x) < 0. The graph on the bottom-left plots
V̇ (x). Next to it, the graph on the bottom-right plots
max(V̇ (x), 0), to make it easy to see where V̇ (x) > 0.
We want both graphs on the right to be flat.

Needless to say, because of the granularity of the
plots, it is possible that there are regions that cross
the plane but are missed by the plotting, especially
near zero. In fact, I noted such missed details a
few times when examining the returned function for
simple systems. For most systems, absolute proof of
these functions’ Lyapunovness requires painstaking al-
gebraic or numerical analysis.

Simple Polynomial Model

The first system tested was the nonlinear system
given by Eqs. 2 and 3 (which had appeared in a home-
work problem):

ż1 = z1z2 (2)
ż2 = −z2

1 − z2 (3)

The ranges of z1 and z2 are z1 ∈ [−1, 1] and z2 ∈
[−1, 1]. For two of the runs, I used the nonterminal
set {+,−,×,÷}; for the rest, {+,−,×,÷, ·2,

√
·}.

One test run returned the function V (z1, z2) = z2
1 +

z2
2 , which is indeed a Lyapunov function in the domain.

It is clearly positive definite, and its derivative is

V̇ = 2z2
1z2 + 2(−z2

1 − z2)z2

= −2z2
2 ≤ 0.

However, it only proves stability, not asymptotic sta-
bility, because V̇ = 0 on the z1-axis. Another test run
returned the function V (z1, z2) = (z2

1 + z2
2)2, which is

also a Lyapunov function, but again does not prove
asymptotic stability. Fig. 5 shows the plots of this
Lyapunov function.

There were a couple runs that produced functions
that looked Lyapunov from the graphs, and seemed
have V̇ strictly less than zero except at the origin,
which would prove asymptotic stability. They were
somewhat more complex to analyse. Fig. 6 shows the
plots for one of these functions. (However, I suspect
this function has a small region where it fails to satisfy
the Lyapunov criteria near the origin.)

But not all of the tests returned a Lyapunov-looking
function. One test produced a function that (seemed
as if it) met the three Lyapunov criteria; however, it
wasn’t continuously differentiable (see Fig. 7). On
some other runs, the system didn’t converge, but

reached the maximum number of generations while
only satisfying the Lyapunov criteria on 80% or so of
the domain. The two runs I made without the square
function in the nonterminal set did this. This is the
nature of genetic algorithms, because of their random-
ness: getting a good result often requires several runs.

Damped Pendulum

Next, genetic programming tackled the damped
pendulum system, given by Eqs. 4 and 5:

ẋ1 = x2 (4)
ẋ2 = − sinx1 − x2 (5)

The ranges for x1 and x2 are x1 ∈ [−π/2, π/2]
and x2 ∈ [−1, 1]. The nonterminal set was
{+,−,×,÷, ·2,

√
·, sin, cos, arctan}.

For this system, the tests produced direct hits quite
quickly (not more than eight generations) in almost all
cases. Figs. 8 and Fig. 9 show the results of two test
runs.

Fig. 8 shows one of the oddest functions produced:
a function composed of a lot of arctangents. This the
interesting thing about genetic programming: it can
produce functions that don’t look at all as we would
expect them. But, assuming this function did not
latently stray across the V = 0 plane, it proves the
stability nonetheless.

Fig. 9 shows a false hit. This function was returned
as 100% Lyapunov, although there are regions of pos-
itive V̇ near the x2-axis, which weren’t tested and
slipped through. The fitness approximation needs im-
provement.

Nonlinear system containing the tangent function.

Finally, the system given in Eqs. 6 and 7 was tested:

ẋ1 = − tanx1 + x2
2 (6)

ẋ2 = −x2 + x1 (7)

The ranges on x1 and x2 are x1 ∈ [−1, 1]
and x2 ∈ [−1, 1]. The nonterminal set was
{+,−,×,÷, ·2,

√
·, sin, cos, tan}.

This, of all the systems, had the oddest-looking re-
sults. I ran four tests, and three returned results that
appeared, from the graphs, to satisfy the Lyapunov
criteria. The results of the three good test runs were:

sin sin tan sin(x1 + x2
2 − tanx1) + (x2

2 − tanx1)2

0.9955 + cos
(
(cos x1 + sin sin cos(x2

2))
2
)

1.557 + (x2
2 − tanx1)2 − tan cos tan x2

Fig. 10 shows the first result listed above.
The unusual form of these results suggest that ge-

netic programming is useful for expanding the range of
possibilities when searching for Lyapunov functions. A
human trying to find a Lyapunov function analytically
would tend not to use oddities like sin sin tan sin(x);
yet genetic programming can search these obscure re-
cesses of hierarchal function space.

6 of 13



Conclusion and Future Work
It is clear that, even with an imperfect fitness mea-

sure, genetic programming is capable of finding func-
tions that at least satisfy the Lyapunov properties over
most of their domain. I expect that the method, with
a better measure of fitness, will be able to find true
Lyapunov functions without false hits. How well this
method will scale up to higher-dimensional and more
complex system remains to be seen.

Some possible future work, besides testing it on
more complex systems, is:

• The measure of fitness has to improve. Perhaps
there is a way to replace the approximation with
an exact measure. One possibility is interval
arithmetic, a feature of Mathematica. Although
it produces intervals too conservative (a true Lya-
punov function might return a interval with neg-
ative values), it warrants more study.

• Sometimes a Lyapunov function with vastly dis-
parate scale would be produced. In some direc-
tions it would rise to 1020; in others it would be
only in the tens. It could be a problem when the
Lyapunov function is used in the control law: in
one direction, the slightest error could saturate
the controls; in another direction, the control law
could be almost completely numb to large error.

As a remedy, the Lyapunov function could be sub-
ject to more stringent conditions, such as being
bound above and below by some positive definite
function.

• Incorporating genetic programming into robust
nonlinear control design. Genetic programming
could search for a control law at the same time as
Lyapunov functions. This would require a more
advanced genetic programming structure, where a
single individual contains multiple trees: one for
the Lyapunov function, and others for the con-
trols.

References
1. Koza, J. R. Genetic Programming: On the Pro-

gramming of Computers by Means of Natural Se-
lection, MIT Press, Cambridge, Mass., 1992.

2. Rodriguez-Vazquez, K. and Fleming, P. J. “Multi-
objective genetic programming for nonlinear sys-
tem identification,” Electronics Letters, Vol. 34,
No. 9, 1998, pp. 930–931.

3. Imae, J. and Takahashi, J. “Design method for
nonlinear H∞ control systems via Hamilton-
Jacobi-Issacs equations: a genetic programming
approach,” Proceedings of the IEEE Conference
on Decision and Control, Vol. 4, IEEE, Piscat-
away, New Jersey, pp. 3782–3783.

4. Khalil, H. S. Nonlinear Systems, 2nd Ed., Pren-
tice Hall, Upper Saddle River, New Jersey, 1996,
p. 100.

7 of 13



V

-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1

0

1

2

3

4

-1

-0.5

0

0.5

1

minHV,0L

-1

-0.5

0

0.5

1-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

dV� dt

-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1

-8

-6

-4

-2

0

-1

-0.5

0

0.5

1

maxHdV� dt,0L

-1

-0.5

0

0.5

1-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

V (z1, z2) = (z2
1 + z2

2)2

ż1 = z1z2

ż2 = −z2
1 − z2

Fig. 5 Result of a genetic programming Lyapunov search for a simple polynomial system.

8 of 13



V

-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1

0

1

2

3

-1

-0.5

0

0.5

1

minHV,0L

-1

-0.5

0

0.5

1-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

dV� dt

-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1

-2

-1

0

-1

-0.5

0

0.5

1

maxHdV� dt,0L

-1

-0.5

0

0.5

1-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

V (z1, z2) = (−z2
1 − z2)2 + z2

1z2
2

ż1 = z1z2

ż2 = −z2
1 − z2

Fig. 6 Result of a genetic programming Lyapunov search for a simple polynomial system.

9 of 13



V

-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1

0

1

2

3

4

-1

-0.5

0

0.5

1

minHV,0L

-1

-0.5

0

0.5

1-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

dV� dt

-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1

-2

-1

0

-1

-0.5

0

0.5

1

maxHdV� dt,0L

-1

-0.5

0

0.5

1-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

V (z1, z2) =
√

z2
1 +

√
(−z2

1 − z2)2 + z2
1z2

2

ż1 = z1z2

ż2 = −z2
1 − z2

Fig. 7 Result of a genetic programming Lyapunov search for a simple polynomial system.

10 of 13



V

-1

0

1
-1

-0.5

0

0.5

1

0
0.05
0.1

0.15

0.2

-1

0

1

minHV,0L

-1

0

1
-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

0

1

dV� dt

-1

0

1
-1

-0.5

0

0.5

1

-0.15

-0.1

-0.05

0

-1

0

1

maxHdV� dt,0L

-1

0

1
-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

0

1

V (x1, x2) =

(
arctan(x1arctanx1) +

x2arctan(x2 + sinx1)√
1 + (arctan(x2 + sinx1))2

)
/8

ẋ1 = x2

ẋ2 = − sinx1 − x2

Fig. 8 Result of a genetic programming Lyapunov search for a damped pendulum system.

11 of 13



V

-1

0

1
-1

-0.5

0

0.5

1

0

0.25

0.5

0.75

-1

0

1

minHV,0L

-1

0

1
-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

0

1

dV� dt

-1

0

1
-1

-0.5

0

0.5

1

-0.6

-0.4

-0.2

0

-1

0

1

maxHdV� dt,0L

-1

0

1
-1

-0.5

0

0.5

1

0
2.5·10-17
5·10-17

7.5·10-17
1·10-16

-1

0

1

V (x1, x2) = arctan(arctan(x2
1 + (x1 + x2)2))

ẋ1 = x2

ẋ2 = − sinx1 − x2

Fig. 9 False result of a genetic programming Lyapunov search for a damped pendulum system.

12 of 13



V

-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1

0

2

4

-1

-0.5

0

0.5

1

minHV,0L

-1

-0.5

0

0.5

1-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

dV� dt

-1

-0.5

0

0.5

1-1

-0.5

0

0.5

1

-20

-10

0

-1

-0.5

0

0.5

1

maxHdV� dt,0L

-1

-0.5

0

0.5

1-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

V (x1, x2) = sin sin tan sin(x1 + x2
2 − tanx1) + (x2

2 − tanx1)2

ẋ1 = − tanx1 + x2
2

ẋ2 = −x2 + x1

Fig. 10 Result of a genetic programming Lyapunov search for a nonlinear system containing the tangent
function.

13 of 13


