Adding Wildcards to the Java Programming Language

Mads Torgersen
Christian Plesner Hansen
Erik Ernst, and
Peter von der Ahé
University of Aarhus

Abogade 34
DK-8200 Arhus N, Denmark

{madst,plesner,eernst,pahe}@daimi.au.dk

ABSTRACT

This paper describes wildcards, a new language construct
designed to increase the flexibility of object-oriented type
systems with parameterized classes. Based on the notion of
use-site variance, wildcards provide a type safe abstraction
over different instantiations of parameterized classes, by us-
ing ‘?” to denote unspecified type arguments. Thus they
essentially unify the distinct families of classes often intro-
duced by parametric polymorphism. Wildcards are imple-
mented as part of the upcoming addition of generics to the
Java™ programming language, and will thus be deployed
world-wide as part of the reference implementation of the
Java compiler javac available from Sun Microsystems, Inc.
By providing a richer type system, wildcards allow for an im-
proved type inference scheme for polymorphic method calls.
Moreover, by means of a novel notion of wildcard capture,
polymorphic methods can be used to give symbolic names
to unspecified types, in a manner similar to the “open” con-
struct known from existential types. Wildcards show up in
numerous places in the Java Platform APIs of the upcoming
release, and some of the examples in this paper are taken
from these APIs.

Categories and Subject Descriptors
D.3.3 [Language Constructs and Features|: Classes and
objects, Data types and structures, Polymorphism

Keywords

Wildcards, genericity, parameterized types

1. INTRODUCTION

Parametric polymorphism is well-known from functional lan-
guages such as Standard ML [22], and over the past two

Gilad Bracha and
Neal Gafter

Sun Microsystems, Inc.
4150 Network Cycle
Santa Clara, CA 95054, USA

{Gilad.Bracha,Neal.Gaftery@sun.com

decades similar features have been added to a number of
object-oriented languages [21, 28, 13].

For some time it has been clear that the Java programming
language was going to be extended with parametric poly-
morphism in the form of parameterized classes and poly-
morphic methods, i.e., classes and methods with type pa-
rameters. A similar mechanism has recently been described
for C# [10], and is likely to become part of a future version
of that language [18].

The decision to include parametric polymorphism — also
known as genericity or generics — in the Java programming
language was preceded by a long academic debate. Several
proposals such as GJ and others [25, 1, 24, 4, 7] were pre-
sented, thus advancing the field of programming language
research. It became increasingly clear that the mechanism
on its own, imported as it were from a functional context,
lacked some of the flexibility associated with object-oriented
subtype polymorphism.

A number of proposals have sought to minimize these prob-
lems [8, 9, 2, 5, 6], and an approach by Thorup and Torg-
ersen [30], which we shall refer to as use-site variance, seems
particularly successful in mediating between the two types
of polymorphism without imposing penalties on other parts
of the language. The approach was later developed, for-
malized, and proven type sound by Igarashi and Viroli [17]
within the Featherweight GJ calculus [15]. This work ad-
dresses typing issues, but was never implemented full-scale.

Wildcards are the result of a joint project between The Uni-
versity of Aarhus and Sun Microsystems, Inc., in which we
set out to investigate if these theoretical proposals could be
adapted and matured to fit naturally into a future version of
the language extended with parametric polymorphism, and
whether an efficient implementation was feasible.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies areThe project has been very successful in both regards. The
not made or distributed for profit or commercial advantage, and that copies . language mechanism has been reworked syntactically
bear this notice and the full citation on the first page. To copy otherwise, to : . . . :
; i X . . .~ and semantically into wildcards with a unified and sugges-
republish, to post on servers or to redistribute to lists, requires prior specific . . .
tive syntax. The construct has been fully integrated with

permission and/or a fee. ’ >
other language features — particularly polymorhic methods

SAC’04, March 14-17, 2004, Nicosia, Cyprus
Copyright 2004 ACM 1-58113-812-1/03/045.00 — and with the Java platform APIs, leading to enhanced

expressiveness, simpler interfaces, and more flexible typ-
ing. The implementation within the Java compiler is an
extension of the existing generics implementation, enhanc-
ing the type checker and erasing parametric information to
produce type-safe non-generic bytecode. Our implementa-
tion of wildcards and the associated modifications are now
scheduled to be part of the forthcoming release of the Java
platform (JDK1.5).

The development process has raised a wealth of interesting
theoretical and implementational issues. The focus of this
paper, however, is on what is probably most important to
users of the language: the new language constructs, and
the problems they address. While our experiences are spe-
cific to the Java programming language, wildcards should be
equally well suited for other object-oriented languages, such
as C#, having or planning an implementation of parametric
polymorphism.

In the following, we will describe wildcards relative to GJ [4],
a proposed dialect of the Java programming language with
generics, which is the starting point for the effort of introduc-
ing genericity in the Java platform. We are thus assuming
a language with parametric polymorphism and describing
wildcards as an extension of this language, although there
will never in reality be a release of the Java platform with
generics but without wildcards.

The central idea of wildcards is pretty simple. Generics in
the Java programming language allow classes like the Java
platform API class List to be parameterized with different el-
ement types, e.g., List{Integer) and List(String). In GJ there
is no general way to abstract over such different kinds of
lists to exploit their common properties, although polymor-
phic methods may play this role in specific situations. A
wildcard is a special type argument ‘?’ ranging over all pos-
sible specific type arguments, so that List(?) is the type of
all lists, regardless of their element type.

The contributions described in this paper include:

e The wildcard mechanism in itself, which syntactically
unifies and semantically generalizes the set of con-
structs constituting use-site variance

e An enhanced type inference scheme for polymorphic
methods, exploiting the improved possibilities for ab-
straction provided by wildcards

e A mechanism which we call wildcard capture, that in
some type safe situations allow polymorphic methods
to be called even though their type arguments cannot
be inferred

An additional contribution is the implementation itself, whose
existence and industrial-quality standard is a proof of the
possibility and practicality of wildcard typing in a real set-
ting. The current prototype can be downloaded for inspec-
tion and evaluation at http://developer.java.sun.com/
developer/earlyAccess/adding_generics/index.html.

In Section 2 we introduce the wildcard construct itself, de-
scribing how it can be used and why it is typesafe. Section 3

investigates the integration with polymorphic methods that
leads to improved type inference and wildcard capture. Re-
lated work is explored in Section 4, and Section 5 concludes.

2. TYPING WITH WILDCARDS

The motivation behind wildcards is to increase the flexibility
of generic types by abstracting over the actual arguments
of a parameterized type. Syntactically, a wildcard is an
expression of the form ‘?’; possibly annotated with a bound,
as in ‘7 extends T’ and ‘? super T’, where T is a type. In
the following we describe the typing of wildcards, and the
effect of using bounds.

2.1 Basic Wildcards

Prior to the introduction of generics into the Java program-
ming language, an object of type List was just a list, not a
list of any specific type of object. However, often all ele-
ments inserted into a list would have a common type, and
elements extracted from the list would be viewed under that
type by a dynamic cast. To make this usage type safe, GJ
lets classes like List be parameterized with an element type.
Objects inserted must then have that type, and in return
extracted objects are known to have that type, avoiding the
unsafe cast. In most cases, this is an improvement over the
previous non-generic scheme, but it makes it harder to treat
a list as “just a list”, independent of the element type. For
instance, a method could take a List as an argument and
only be interested in clearing it or reading properties like
the length. In GJ, that could be expressed using a polymor-
phic method with a dummy type variable:

(T) void aMethod(List(T) list) { ... }

The solution is to give a name to the actual element type of
the list and then ignore it in the body of the method. This is
not a clean solution—but it works and was used extensively
in GJ’s libraries.

A more serious problem is the case where a class needs a
field whose type is some List, independent of the element
type. This is especially a problem in cases where the generic
class provides a lot of functionality independent of the actual
type parameters, as is the case for instance with the generic
version of the class java.lang.Class. This cannot be expressed
in GJ.

The solution is to use an unbounded wildcard, ‘7’ in place of
the type parameter when the actual type is irrelevant:

void aMethod(List(?) list) { ... }

This expresses that the method argument is some type of
list whose element type is irrelevant. Similarly, a field can
be declared to be a List of anything;:

private List(?) list;

The type List(?) is a supertype of List(T) for any T, which
means that any type of list can be assigned into the list field.
Moreover, since we do not know the actual element type we
cannot put objects into the list. However, we are allowed
to read Objects from it—even though we do not know the
exact type of the elements, we do know that they will be
Objects.

In general, if the generic class C is declared as

class C(T extends B) { ... }

when called on a C(?), methods that return T will return
the declared bound of T, namely B, whereas a method that
expects an argument of type T can only be called with null.
This mean that we can actually add elements to a List(?),
but only nulls.

Note that a wildcard should not in general be considered as a
name of a specific type. For instance, the two occurrences of
‘?” in Pair(?,?) are not assumed to stand for the same type,
and even for the list shown above, the ‘7’ in its type may
stand for two different types before and after an assignment,
as in list = new List(String)(); list=new List(Integer)().

2.2 Bounded Wildcards

Unbounded wildcards solve a class of problems with generic
types, but lack one capability of polymorphic methods: if
the element type of a list is not completely irrelevant, but
required to conform to some bound, this could be expressed
in GJ using a type bound (here Number):

(T extends Number) void aMethod(List(T) list) { ... }

To be able to express that the element type of the list
must be a subtype of Number, we again have to introduce a
dummy type variable. As before, this only works for meth-
ods and not for fields. In order for wildcards to help us
out once more, we therefore equip them with bounds to ex-
press the range of possible type arguments “covered” by the
wildcard:

void aMethod(List(? extends Number) list) { ... }

This expresses that the method can be called with any list,
as long as the element type is a subtype of Number. As
before, we cannot write (anything but null) to the list, since
the actual element type is unknown, but we are now allowed
to read Numbers from it:

List(? extends Number) list = new ArrayList(Integer)();
Number num = list.get(0); // Allowed
list.set(0, new Double(0.0)); // Illegal!

Parameterized types with extends-bounded wildcards are re-
lated by subtyping in a covariant fashion: All instances of
List(? extends Integer) are also instances of List(? extends
Number), so the former is a subtype of the latter.

While extends-bounds introduce upper bounds on wildcards,
the introduction of lower bounds is also possible using so-
called super-bounds. The type List(? super String) is a su-
pertype of any List(T) where T is a supertype of String; for
instance List(String) and List(Object).

This is useful, e.g., with Comparator objects. The Java plat-
form class TreeSet represents a tree of elements that are
ordered. One way to define the ordering is to construct the
TreeSet with a specific Comparator object:

interface Comparator(T) {
int compareTo(T fst, T snd);

}

When constructing, e.g., a TreeSet(String), we need to pass
it some Comparator that can compare Strings. This can be
done by a Comparator(String), but a Comparator(Object) will
do just as well, since Strings are Objects. In this case, the
type Comparator(? super String) is appropriate, since it is a
supertype of any Comparator(T) where T is a supertype of
String.

Conversely to extends-bounds, super-bounds give rise to con-
travariant subtyping: Comparator(? super Number) is a sub-
type of Comparator(? super Integer).

3. POLYMORPHIC METHODS

Wildcards and polymorphic methods interact in several ways,
as described in the following.

3.1 Type Inference

Polymorphic methods can be called with or without explicit
type arguments. When no explicit type arguments are given,
they are inferred from the type information available at the
call site. Inferring a type for a type variable T means select-
ing a type that by insertion produces a method signature
such that the given call site is type correct, and ensuring
that this type satisfies the bound for T. In this process a
subtype is preferred over a supertype because the former
generally preserves more information about return values.
To be concrete, consider these declarations:

(T) T choose(T a, Tb) { ... }

Set(Integer) intSet = ...
List(String) stringList = ...

In the call choose(intSet, stringList), a type has to be found
for T that is a supertype of both Set(Integer) and List(String).
Since different parameterizations of the same class are in-
comparable in GJ the only such type is Object, even though
Set(T) and List(T) share the superinterface Collection(T).
What lacks is the ability to describe a Collection whose ele-
ment type is not specified directly, but abstracts over both
Integer and String. With wildcards, this can be expressed
as Collection(?), and hence a more specific type than Object
can be inferred.

This is an example of a general phenomenon: when given
two parameterized classes with different type arguments for
the same parameter, it is inherently impossible for GJ to
infer a type that involves that parameter. In this case that
means ignoring that Collection(T) is a common superinter-
face for Set(T) and List(T). This restriction does not apply
when wildcards are available, because ? can be used in any
case, and that leads to a more accurate type inference.

In the choose() example, the type variable T is also used as
a return type, so the improved inference has the beneficial
consequence that the caller now knows that a Collection is
returned—useful if the intention is, e.g., to iterate over the
elements.

In some cases, the inference may be improved to provide
bounds for the inferred wildcards. Our experiments show,
however, that a general approach to obtain the best possible

bounds has some problems. First, there may be both an up-
per and a lower “best bound”, so the choice between them
would have to be arbitrary. Secondly, the best upper or
lower bound may be an infinite type, with all the problems
that this entails. In our current implementation we take in-
stead a simplistic strategy, allowing bounds in the inference
result only if they occur in one of the type arguments on
which the inference is based, and are implied by the other.
Thus, for Set(Integer) and List(? extends Number), we would
infer Collection(? extends Number).

3.2 Wildcard Capture

Wildcards, as described above, turn out to cause a practical
dilemma when defining methods and variables. An exam-
ple of this is the static Collections.unmodifiableSet() method,
which constructs a read-only view of a given set. A natural
signature for this method could be this:

(T) Set(T) unmodifiableSet(Set(T) set) { ... }

This method can be called with a Set(T) for any type T,
and returns a set with the same element type. However, it
cannot be called with a Set(?), because the actual element
type is unknown. A read-only view of a set is useful even
if the actual element type is unknown, so this is a problem.
However, since the body of this method does not depend on
the exact element type, it could instead be defined as

Set(?) unmodifiableSet(Set(?) set) { ... }

This would allow the method to accept any set, but in return
discards the information that the returned set has the same
element type as the given set:

Set(String) set = ...
Set(String) readOnly = unmodifiableSet(set); // Error!

In this case we get an error because the result of calling
unmodifiableSet with a Set(Integer) is a Set(?). And so, we
are left with a choice: should the method take a Set(T) to
give an accurate return type or a Set(?) to allow the method
to be called with sets whose exact element type is unknown?

The solution is to observe that it is actually safe to allow the
method taking a Set(T) to be called with a Set(?). We may
not know the actual element type of the Set(?), but we know
that at the instant when the method is called, the given set
will have some specific element type, and any such element
type would make the invocation typesafe. This mechanism
of allowing a type variable to be instantiated to a wildcard
in some situations is known as wildcard capture, because the
actual run-time type behind the ? is “captured” as T in the
method invocation.

Capturing wildcards is only legal in some situations, how-
ever. [t must be known that there is a unique type to capture
at runtime. For this reason, a type variable can only cap-
ture one wildcard because, for instance, the actual element
types of two different Set(?)s may be different. Also, only
type variables that occur at “top level” in a generic class (as
in Stack(T) and unlike Stack(Stack(T)) or Stack(T[])), can
be captured. This is again because two Stack(?) elements of
a Stack(Stack(?)) may have different element types, and so
cannot be captured by the single T in Stack(Stack(T)).

The first definition of unmodifiableSet() above fulfills these
conditions, so the following call is allowed:

Set(?) set = ...;
set = unmodifiableSet(set);

Thus, the API needs to contain only the polymorphic ver-
sion of unmodifiableSet() since, with capture, it implies the
typing also of the wildcard version.

3.3 Proper Abstraction

Wildcard capture also addresses a related problem of GJ.
Consider the method Collections.shuffle(), which takes a List
and reshuffles its elements. One possible choice of signature
is

(T) void shuffle(List(T) list) { ... }

because the method body needs a name for the element type
of the list, in order to remove and re-insert its elements.
However, the caller of such a method should only have to
worry about the types of objects the method can be called
with; in this case any List. Seen from the caller’s perspec-
tive the signature of shuffle() should therefore be the more
concise:

void shuffle(List(?) list) { ... }

Wildcard capture allows us to mediate between these two
needs, because it makes it possible for the wildcard version of
the method (which should be public) to call the polymorphic
version (which should be private and have a different name).

In general, private methods can be employed in this way to
“open up” the type arguments of types with wildcards, thus
avoiding that implementation details such as the need for
explicit type arguments influence the public signatures of a
class or interface declaration.

3.4 Capture and Quantification

Wildcard capture further exploits the connection between
wildcards and the existentially quantified types of Mitchell
and Plotkin [23], which is established for variant paramet-
ric types in [17]. Following this line of argument, the above
declaration of Set(?) set can be compared to a similar dec-
laration with the existential type 3X.Set(X).

Capture then amounts to applying the open operation of ex-
istential types to obtain a name T for the particular element
type of set and a name s for set with the type Set(T). Both
can then be used in a subexpression containing the method
call to be captured:

IX.Set(X) set;
open set as T,s in Collections.unmodifiableSet(s);

Using this syntax it is clear that unmodifiableSet() is in fact
called with a fixed type argument T, because s has the type
Set(T). Wildcard capture may therefore be seen as an im-
plicit wrapping of polymorphic method calls with such open
statements, when appropriate.

4. RELATED WORK

Virtual types are the ultimate origins of wildcards, and the
historical and semantic relations are described below. We
then look at variance annotations both at the declaration
site and the use site of parametric classes, the latter ap-
proach being the starting point for the design of the wildcard
mechanism. Finally, we investigate the origins of the expres-
sive differences between polymorphic methods and wildcards
which we saw in Section 2.

4.1 Virtual types

Wildcards ultimately trace their origins back to the BETA
programming language [20]. Virtual classes in BETA sup-
port genericity, thereby providing an alternative to param-
eterized classes. Virtual classes are members of classes that
can be redefined in subclasses, similarly to (virtual) meth-
ods. In their original form in BETA, virtual classes were
a happy by-product of BETA’s unification of methods and
classes into patterns, and so the mechanism in BETA is actu-
ally known as virtual patterns. Thorup introduced the term
virtual type in his proposal for adding these to the Java pro-
gramming language [29]. This terminology was followed by
subsequent incarnations of the construct [31, 6, 16], which
all re-separate virtual types from virtual methods.

Using Thorup’s syntax, a generic List class may be declared
as follows:

abstract class List {
abstract typedef T;
void add(T element) { ... }

T get(inti) { ... }

T is a type attribute, which may be further specified in sub-
classes. These can either further bound the virtual type by
constraining the choice of types for T, or they can final bind
it by specifying a particular type for T:

abstract class NumberList {
abstract typedef T as Number; // Further bounding

}

class IntegerList extends NumberList {
final typedef T as Integer; // Final binding

}

These classes are arranged in a subtype hierarchy,
IntegerList <: NumberList <: List,

which is very similar to that of a parameterized List class
with wildcards:

List(Integer) <: List(? extends Number) <: List(?)

Also, the abstract List classes—those with non-final virtual
types—restrain the use of their methods, so that an attempt
to add e.g. an Integer to a NumberList will be rejected.?

! Actually in BETA, assignments that may possibly succeed
are not rejected by the compiler: instead a warning is issued
and a runtime cast is automatically inserted. This policy has
lead many to the false conclusion that BETA and virtual
types are not statically safe; see, e.g., [6, 31].

Thus, virtual types in BETA is the first mechanism that
lets different parameterizations of a generic class share a
nontrivial common supertype. However, since subtypes are
always subclasses, achieving hierarchies like the above re-
quires planning: if IntegerList had been a direct subclass
of List, it could not also be a subtype of NumberList. Fur-
thermore, the use of single inheritance prohibits multiple
supertypes, whereas wildcards allow, e.g., List{Integer) to be
a subtype of both Collection(Integer) and List(?).

The gbeta language [14], which generalizes BETA in several
ways, reduces the latter problem by having structural sub-
typing at the level of mixins, but the inheritance hierarchy
must still be carefully planned and centrally managed. How-
ever, inspired by various variance mechanisms including [30]
the notion of constrained virtuals has recently been added
to gbeta, thus providing a purely structural mechanism in-
tegrated with virtual patterns.

Thorup and Torgersen [30] compare the two genericity mech-
anisms, parameterized classes and virtual types, seeking to
enhance each with the desirable features of the other. Vir-
tual types are thus extended with the structural subtyping
characteristic of parameterized classes (relating List(Number)
to Collection(Number)) to overcome the restrictions of BETA
above. This approach has later been used in the RUNE
project [32].

4.2 Declaration-site variance

A different approach to obtain subtyping relationships among
different instantiations of parameterized classes is to use
variance annotations. First proposed by Pierre America [2],
and later used in the Strongtalk type system [3], declaration-
site variance allows the declaration of type variables in a
parameterized class to be designated as either co- or con-
travariant. For instance, a read-only (functional) List class
may be declared as:

class List(covar T) {
Thead() { ... }

, List(T) tail() { ... }

This will have the effect that, e.g., List(Integer) is a sub-
type of List(Number), but prevents the List class from having
methods using T as the type of an argument. In a symmet-
ric fashion, write-only structures, such as output streams,
can be declared contravariant in their type arguments.

In practical object-oriented programming, this approach has
severe limitations. Usually, data structures such as collec-
tions have both read and write operations using the element
type, and in that situation, declaration-site variance cannot
be applied.

Note that “write operation” is to be taken in the broad sense
of “operations taking arguments of the element type”. Thus,
due to the covariance annotation the above functional List
class cannot even contain a cons() method of the following
form:

List(T) cons(T elm) { return new List(T)(elm,this); }

even though this does not modify the list. Thus, in reality,
declaration-site variance enforces a functional or procedural
style of programming, where a lot of functionality has to be
placed outside of the classes involved.

4.3 Use-site Variance

Thorup and Torgersen introduce the concept of use-site co-
variance for parameterized classes [30]. This is a new way
of providing covariant arguments to parameterized classes,
inspired by BETA. A prefix ‘4’ is used, and List(+Number)
denotes a common supertype of all List(T), where T is a
subtype of Number. In exchange for the covariance, writ-
ing to a List(+Number) is prohibited. Hence, ‘+Number’ is
essentially equivalent to the wildcard ‘? extends Number’.

In [17], Igarashi and Viroli propose a significant extension of
this scheme, adding a contravariant form of use-site variance
List(-Number), roughly equivalent to List(? super Number).
Also, a so-called “bivariant” form List(*Number) is added,
which, like an unbounded wildcard List(?) ranges over all
kinds of lists. In the bivariant case, the Number part of
the type argument is ignored and is there only for syntactic
symmetry. The authors themselves propose the shorthand
List(*). Igarashi and Viroli provide a formalization in con-
text of Featherweight GJ [15], which has been proven sound.
Their work was our starting point for the design of wild-
cards, and the differences between this approach and the
approaches we know from languages like BETA has been a
source of fruitful discussions. For instance, we currently use
covariance propagation as described by Igarashi and Viroli,
but this does not fully describe our approach because it does
not cover wildcard capture. A formalization that covers all
the features is ongoing work.

Unlike wildcards, co- and contravariant instantiations of use-
site variance rely heavily on read-only and write-only seman-
tics. With the contravariant List(-Number), for instance,
calling the get() method is strictly disallowed, because the
class is considered write-only. Conversely, calling add() on a
covariant List(+Number) is prohibited, even with null, and
of course the bivariant List(¥Number) disallows both.

We find the focus on read-only and write-only somewhat
misleading, especially because it seems to imply a kind of
protection. For instance, a programmer might well consider
a List(+Number) to be safe-guarded from mutation, but in
reality it is still perfectly possible to call e.g. its clear()
method, because it does not take arguments of the element
type.

Wildcards focus instead on the type information trade-off:
The less you require in a type, the more objects can be typed
by that type. For example, the type List(? super Integer)
describes a larger set of objects than the type List(Integer);
in both cases it is harmless to call a read method like get(),
but in the latter case we know the result is an Integer and
in the former case we only know it is an Object.

4.4 Polymorphic methods

Parametric polymorphism, as known from SML and pro-
vided for object-orientation through languages such as Pizza
and GJ, provides insufficient support for abstracting over
different instantiations of a parameterized class. The ex-

pressive power added by wildcards and similar mechanisms
will be substantiated in the following.

Parametric polymorphism in functional languages is a highly
effective mechanism for abstracting over different instantia-
tions of a polymorphic type. For instance, the polymorphic
type of the well-known map function,

(¢ = B) — alist — § list,

allows us to use map on any list and function where the
argument type of the function is the element type of the list.
This seems to indicate that there is no need for additional
mechanisms in order to abstract over different instantiations
of a parameterized class.

However, the abstraction over the values of type arguments
such as « and [is handled by statically ensuring that every
function invocation represents a consistent (partial) instan-
tiation of the polymorphic type. This means that map can
only be invoked if we statically know the value of each type
variable, or it is expressed in terms of variables in the type
of the calling function, etc., down to the top-level expression
associated with the bottom of the call stack. The type of a
top-level expression cannot contain type variables, accord-
ing to the value restriction rule of SM1L’97 [19], unless it is
syntactically a simple value (in which case the computation
and hence also the run-time stack is trivial). Consequently,
in order for a polymorphic method to be invoked, full type
information must be available somewhere in the program.

This is no problem in purely functional languages, because
each value itself may be derived from the call stack and hence
it does not represent a loss of flexibility that its type must
be deducible from the stack. In a language with side-effects,
however, a value can be stored by one part of the program
and later read by another part. Even if full type information
were available about the value when it was stored, some of
that information may be lost at the point where the value
is read.

In an object-oriented context the same phenomenon arises
for invocations of polymorphic methods, but here muta-
ble data structures are the norm rather than the excep-
tion. Compared to the typical programming assumptions
of object-oriented languages, requiring that all type infor-
mation about the type arguments to parameterized classes
is available somewhere in the program, as in GJ or generic
C+#, is a serious restriction. If we create, e.g., an Integer ob-
ject and store it in a variable of type Number then there is no
need for any location in the program where the exact type
Integer of that object is known. The need to maintain exact
type knowledge for individual objects such as a List(Integer)
runs contrary to the object-oriented polymorphic style of
programming, and is a heavy burden on programmers.

In other words, when directly carrying over polymorphic
methods from functional languages into object-oriented lan-
guages, the need to maintain exact type information leads
to more complex and contorted designs, especially in large
scale systems. Wildcards alleviate this problem, and are
hence a significant enhancement of the expressive power of
the language.

One way to state this result is that existential types do make
a difference, and wildcards provide a restricted kind of ex-
istential types. Note that there are also several proposals
for extending SML with existential types, e.g. [27] where
structures and functors are made first-class and typed exis-
tentially, and such extensions seems to be a viable strategy
to remove the value restriction from SML.

5. CONCLUSIONS

In this project, the Java programming language has been
extended with wildcards, thus bringing ideas about virtual
types and use-site variance to the mainstream. In this design
and implementation process, several lessons were learned
and new ideas produced. First, the notion of wildcards was
designed and implemented; second, type inference for in-
vocation of polymorphic methods was enhanced to handle
wildcards; and third, the notion of wildcard capture was
introduced, exploiting the existential nature of the ‘?” in
many usages of wildcards. Finally, we have argued that the
expressive power of wildcards is a non-trivial enhancement
to the power of polymorphic methods, essentially because
wildcards are a restricted form of existential types.

6. ACKNOWLEDGMENTS

Numerous people have contributed to the design of wild-
cards, not least from the participation in many lively dis-
cussions. We wish here to thank especially Martin Odersky,
Atsushi Igarashi, Mirko Viroli, Lars Bak, Josh Bloch and
Graham Hamilton who all had a significant influence on the
resulting design.

7. REFERENCES
[1] O. Agesen, S. N. Freund, and J. C. Mitchell. Adding
type parameterization to the java programming
language. In Object Oriented Programming: Systems,
Languages and Applications, Atlanta, Georgia, Oct.
1997. OOPSLA97, ACM Press. Toby Bloom, editor.

[2] P. America and F. van der Linden. A parallel
object-oriented language with inheritance and
subtyping. In Object Oriented Programming: Systems,
Languages and Applications/European Conference on
Object-Oriented Programming, pages 161-168, Ottawa,
Canada, Oct. 1990. OOPSLA/ECOOP90, ACM Press.
Norman K. Meyrowitz, editor.

[3] G. Bracha and D. Griswold. Strongtalk: Typechecking
smalltalk in a production environment. In Object
Oriented Programming: Systems, Languages and
Applications, Washington DC, Oct. 1993. OOPSLA93,
ACM Press. Andreas Paepcke, editor.

[4] G. Bracha, M. Odersky, D. Stoutamire, and
P. Wadler. Making the future safe for the past:
Adding genericity to the java programming language.
In OOPSLA9S8 [26].

[5] K. Bruce. Subtyping is not a good match for
object-oriented programming languages. In ECOOP97
[11].

[6] K. Bruce, M. Odersky, and P. Wadler. A statically
safe alternative to virtual types. In European
Conference on Object-Oriented Programming,

(12]

(13]

(14]

(15]

(18]

Brussels, Belgium, July 1998. ECOOP98, LNCS 1445,
Springer Verlag. Eric Jul, editor.

R. Cartwright and G. L. Steele. Compatible genericity
with runtime-types for the Java programming
language. In OOPSLA98 [26].

W. Cook. A proposal for making Eiffel type-safe. In
European Conference on Object-Oriented
Programming, pages 57-70, Nottingham, England,
July 1989. ECOOPS89, Cambridge University Press.
Stephen Cook, editor.

W. Cook, W. Hill, and P. Canning. Inheritance is not
subtyping. In Principles of Programming Languages,
pages 125-135, San Francisco, California, Jan. 1990.
POPL90, ACM Press. Paul Hudak, editor.

ECMA. C# language specification.
http://wuw.ecma-international.org/
publications/standards/Ecma-334.htm, 2002.

ECOOP97. European Conference on Object-Oriented
Programming, Jyvaskyld, Finland, June 1997. LNCS
1241, Springer Verlag. Mehmet Aksit and Satoshi
Matsuoka, editors.

ECOOP99. FEuropean Conference on Object-Oriented
Programming, Lisbon, Portugal, June 1999. LNCS
1628, Springer Verlag. Rachid Guerraoui, editor.

M. A. Ellis and B. Stroustrup. The Annotated C++
Reference Manual. Addison-Wesley, 1990.

E. Ernst. gbeta — a Language with Virtual Attributes,
Block Structure, and Propagating, Dynamic
Inheritance. PhD thesis, Department of Computer
Science, University of Aarhus, Arhus, Denmark, 1999.

A. Igarashi, B. Pierce, and P. Wadler. Featherweight
Java: A minimal core calculus for Java and GJ. In
Object Oriented Programming: Systems, Languages
and Applications, pages 132-146, Denver, Colorado,
Oct. 1999. OOPSLA99, ACM Press. Linda Northrop,
editor.

A. Tgarashi and B. C. Pierce. Foundations for virtual
types. In ECOOP99 [12].

A. Igarashi and M. Viroli. On variance-based
subtyping for parametric types. In European
Conference on Object-Oriented Programming, pages
441-469, M4élaga, Spain, June 2002. ECOOP02, LNCS
2374, Springer Verlag. Boris Magnusson, editor.

A. Kennedy and D. Syme. Design and implementation
of generics for the NET common language runtime. In
C. Norris and J. J. B. Fenwick, editors, Proceedings of
the ACM SIGPLAN ’01 Conference on Programming
Language Design and Implementation (PLDI-01),
volume 36.5 of ACM SIGPLAN Notices, pages 1-12,
N.Y., June 20-22 2001. ACMPress.

D. MacQueen. SML ’97 conversion guide.
http://wuw.smlnj.org/doc/Conversion/index.html,
2003.

[20]

[21]

[25]

O. L. Madsen, B. Mgller-Pedersen, and K. Nygaard.
Object-Oriented Programming in the BETA
Programming Language. Addison-Wesley, 1993.

B. Meyer. Genericity versus inheritance. In Object
Oriented Programming: Systems, Languages and
Applications, pages 391-405, Portland, Oregon, Nov.
1986. OOPSLAR&6, ACM Press. Norman K.
Meyrowitz, editor.

R. Milner, M. Tofte, R. W. Harper, and D. MacQueen.
The Definition of Standard ML. MIT Press, 1997.

J. C. Mitchell and G. D. Plotkin. Abstract types have
existential types. ACM Transactions on Programming
Languages and Systems, 1988.

A. Myers, J. Bank, and B. Liskov. Parameterized
types for Java. In Conf. Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), Paris, France, Jan.
1997. POPL97, ACM Press. Neil D. Jones, editor.

M. Odersky and P. Wadler. Pizza into Java:
Translating theory into practice. In Conference Record
of POPL ’97: The 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
pages 146-159, Paris, France, 15-17 Jan. 1997.

OOPSLA98. Object Oriented Programming: Systems,
Languages and Applications, Vancouver, BC, Oct.
1998. ACM Press. Craig Chambers, editor.

C. V. Russo. First-class structures for standard ML.
Lecture Notes in Computer Science, 1782:336++,
2000.

D. Stoutamire and S. Omohundro. The Sather 1.1
specification. Technical Report TR-96-012,
International Computer Science Institute, Berkeley,
CA, Aug. 1996.

K. K. Thorup. Genericity in Java with virtual types.
In ECOOP97 [11], pages 444-471.

K. K. Thorup and M. Torgersen. Unifying genericity.
In ECOOP99 [12], pages 186-204.

M. Torgersen. Virtual types are statically safe. In
K. Bruce, editor, 5th Workshop on Foundations of
Object-Oriented Languages, San Diego, CA, Jan. 1998.

M. Torgersen. Unifying Abstractions. PhD thesis,
Computer Science Department, University of Aarhus,
bogade 34, DK-8200 rhus N, Sept. 2001.

