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Introduction 

Combinatorics, the mathematics of counting, provides invaluable 
tools for both puzzle solving and puzzle design. Solvers of mathematical 
and mechanical puzzles are often confronted with difficult issues of 
counting combinations, often complicated by symmetry. Similarly, 
puzzle designers may want to add elegance to their designs by 
incorporating symmetry and using sets of pieces that are somehow 
aesthetically pleasing in their completeness (such as the so-called 
English Selection1).  

Conventional techniques are not always sufficient to solve some 
combinatorial problems, especially those where symmetry reduces the 
number of unique configurations. Fortunately, there is a particularly 
powerful, but relatively unknown tool for exactly this type of problem: 
the Pólya-Burnside Lemma. This paper will present this principle in 
common language, and give specific examples of how it can be used. 

                                                           
  Nick Baxter is a mathematician and puzzle expert who loves to count. 
1 James Dalgety coined the phrase "English Selection," referring to a logically complete set of puzzle 
pieces. For example, the 12 planar Pentominoes qualify as an English selection; but for most 
puzzles, such the Soma Cube, Instant Insanity, Tangrams, Eternity, etc., this is not the case. Many 
times, whether or not a set is an English selection is a judgment call, and can be artificially contrived 
since the reference domain can be arbitrary constructed. 
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2-Color Cube Problem 

Let's say we want to determine the total number of possible 2-color 
Instant Insanity cubes–in other words, how many different ways can you 
paint the faces of a cube using no more than two specific colors, say 
black and white?  

At first blush, it may seem as if the answer is simply 26, since the 
cube has six faces, each of which can be colored two ways.  But that 
answer double-counts certain colorings.  For example, the coloring in 
which two opposite faces of the cube are black and the others white gets 
counted three times:  once when the black faces are top and bottom, 
again when they're front and back, and once more when they're left and 
right.  So 64 is really just an upper bound on the answer we're looking 
for. 

The trick is to organize the counting so that every possible 
configuration is counted exactly once. One approach is to first inventory 
the ways to partition the faces into at most two like-colored sets, and then 
later apply the colors to the patterns found: 

• 6-0: Clearly, there's just one way to have six faces of one color 
and none of the other (we'll worry about which color it is later). 

• 5-1: There is only one way to have just one face colored different 
from the other five (remember, we are ignoring rotations). 

• 4-2: There are two ways to do this.  One has the "minority" color 
on opposites faces of the cube; the other has it on two adjacent 
faces. 

• 3-3: There are two ways to do this 
also. One has like-colored faces all 
meeting at a common vertex (with 
the remaining faces similarly 
oriented at the opposite vertex); the other has like-colored faces 
in a row. 

Now applying two colors to each of these patterns, we find 2, 2, 4, 
and 2 colorings respectively (because of symmetry, one must be careful 
not to count each of the 3-3 patterns twice), giving a total of 10, which is 
considerably less than our upper bound of 64.  
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For this problem, we had to be somewhat careful, but symmetry 
didn't cause too much trouble. The results would be the same if we 
"colored" the cube's faces with any two distinct markings, as long as both 
the markings had 90° rotational symmetry, such as  and . But what if 
we used  and  instead? Now the trouble with symmetry becomes 
apparent: do we have two patterns or just one? Approaching the problem 
by inventorying the partitions of faces no longer works; and simply 
determining if two cubes are really the same becomes much more 
difficult to visualize. To better understand the difficulty, try solving this 
new problem; it will be discussed later in the examples. 

These two problems can be extended to four (or more) colors or 
orientations. With four options per face, there are 46 (4,096) total 
permutations. With so many possibilities, these problems move outside 
most puzzlers' scope of reliably determining inventories and symmetries 
by hand. One could write a search program, but such techniques are not 
necessarily of interest to mathematicians or non-programmers.  

Pólya-Burnside Lemma 

The good news is that the Pólya-Burnside Lemma1 is the perfect tool 
for solving this type of problem. It's been known to mathematicians for 
over 100 years, but surprisingly I've found that many puzzlers, including 
those well-versed in recreational mathematics, are not familiar with this 
powerful technique. The rest of this paper presents the Pólya-Burnside 
Lemma without the jargon of combinatorial group theory, and 
demonstrates how easy it is to use this powerful tool. 

In the world of pure mathematics, any theorem must be precisely 
stated, including the conditions for when the theorem may be applied. 
Perhaps one reason why puzzlers don't know the usefulness of the 
Lemma is that it is not always stated in terms that are easy to understand. 
For example, consider this version, taken from Eric Weisstein's 
MathWorld [11] (where it's called the Cauchy-Frobenius Lemma): 

                                                           
1 Within mathematical circles, there has been plenty of discussion regarding the proper name and 
attribution, and it is probably best known recently as Burnside's Lemma. Neumann [8] gives an 
excellent history of this and a compelling case for the name Cauchy-Frobenius Lemma. However, 
I've chosen to recognize those that first applied the underlying principles to combinatorics, and to 
use a name that appears to be most familiar with the intended audience. 
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Let J be a finite group and the image R(J) be a representation which 
is a homeomorphism of J into a permutation group S(X), where S(X) 
is the group of all permutations of a set X. Define the orbits of R(J) 
as the equivalence classes under x ~ y, which is true if there is some 
permutation p in R(J) such that p(x) = y. Define the fixed points of p 
as the elements x of X for which p(x) = X. Then the average number 
of fixed points of permutations in R(J) is equal to the number of 
orbits of R(J). 

Outside the world of group theory, this doesn't help much. Better is the 
concise statement from a text on combinatorial mathematics by C. L. Liu 
[6]: 

Theorem (Burnside) 

The number of equivalence classes into which a set S is divided by 
the equivalence relation induced by a permutation group G of S is 
given by  

∑
∈GG π

πψ )(1
 

where )(πψ  is the number of elements that are invariant under the 
permutation π . 

This may be easy for mathematicians to understand, but not for the 
rest of us. Let's start by translating the terminology it into language that a 
puzzler can understand.  

S - The set of all possible variations of an object, with no 
considerations for rotations and reflections. For painting a cube 
with four colors, this set has 46 members. 

Permutation - For puzzles, the permutations of interest are those that  
take a physical object and reorient it so that it appears 
structurally the same (ignoring coloring or other variations to be 
considered later). For a cube, a permutation would be any way to 
pick it up and put it back down in the same place. When doing 
so, any of the six faces can be face down; then there are four 
ways to rotate the cube so that the bottom face stays on the 
bottom. Thus there are 24 possible permutations of a cube.  
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It is important to remember that a permutation is the action that 
transforms the cube to a new position, not the position itself. 

Permutation Group - This is the set of all possible permutations of 
the physical objects under consideration. It forms a group in the 
formal mathematical sense because the result of applying one 
permutation and then another is again a permutation of the 
objects. |G| is the short-hand notation for the number of 
permutations in group G. 

Equivalence Relation - This is the rule that determines whether or 
not two objects are the same. An "equivalence relation induced 
by a permutation group" is simply saying that two objects are the 
same if there is a permutation that transforms one into the other. 
So this is really what puzzlers mean when they say that two 
objects are "the same" or use phrases like "ignoring rotations and 
reflections." 

Equivalence Class - When considering permutations of physical 
objects, this is a set of objects that are the same, ignoring 
rotations and reflections. When one is looking for the number of 
"unique shapes" or "unique colorings", we are really looking for 
the number of equivalence classes. 

Invariant Element - This is any object that appears exactly the same 
before and after a permutation. For example, the first tile below 
is invariant when rotated 0°, 90°, 180°, and 270°; the second tile 
is invariant when rotated 0° and 180°; and the third tile is 
invariant only when not rotated at all. 

4-way 2-way 1-way 

The most important concept is that of invariant elements because the 
Pólya-Burnside Lemma reduces all problems of symmetry to simply 
counting the number of invariant elements for each permutation. The key 
is that for many puzzles, this counting is significantly easier than any 
other equivalent problem-solving technique. 

So it makes sense to first consider a base object, such as a cube, 
domino, tile, rectangle, etc., without any of the alternations or 
reorientations prescribed by the puzzle. Next, a puzzle object is a 
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member of the set of all variations of the base object that satisfy the 
puzzle's constraints. Thus the typical puzzle will ask for the number of 
unique puzzle objects satisfying the given criteria.  

Now we can restate the Pólya-Burnside Lemma using language that 
puzzlers can use. 

Pólya-Burnside Lemma—Puzzlers' Version 

The number of unique puzzle objects that are variations of a base 
object p is 

))()()((1
21 nn

πψπψπψ +++ K  

where },,,{ 21 nG πππ K= is the set of all physical permutations of 
p, and )(πψ  is the number of invariant puzzle objects for the 
permutation π . 

It may seem as if the Polya-Burnside Lemma simply turns one 
counting problem into a multitude, since the number of permutations can 
itself be huge.  But in theory–and in practice–permutations can be 
organized into families of similar operations, with the same )(πψ for 
each member in each family.  (In the jargon of group theory, the families 
are called conjugacy classes.)  This often reduces a difficult counting 
problem to just a handful of easily solved counting problems. 

 

All About the Cube 

Let's return to the first example, coloring a cube with two colors, and 
see how this works. The base object p is just a normal cube, and G is the 
corresponding set of 24 cube permutations, so n=24. The cube 
permutations can be grouped into families of similar operations as 
follows: 

},,,,{ EDHQIG = , where 

• I: Identity–no rotation (1 permutation) 
• Q: 90° face rotations (6 permutations—three pairs of opposite 

faces, rotation in either direction) 
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• H: 180° face rotations (3 permutations—three pairs of opposite 
faces) 

• D: 120° major diagonal rotations (8 permutations—four pairs of 
opposite vertices, rotation in either direction) 

• E: 180° center-edge rotation (6 permutations—six pairs of 
opposite edges) 

For I, there are 26 ways to color the cube with two colors (ignoring 
rotations, reflections, or any other reorientation of the puzzle object). 
Since every object is invariant under the identity permutation, the total 
for this case is still 26. 

For each of the six Q permutations, both the top and 
bottom faces can be any color, since they stay in the same 
location during the rotation. For the four side faces, a Q 
permutation rotates one face to the next in a cycle of four. 
Thus they must all be the same color if a 90° rotation is to 
appear exactly the same. This gives 23 invariant objects. 

For each of the three H permutations, again the top and 
bottom faces can be any color. But unlike Q, an H 
permutation rotates each side face to the opposite face. Thus 
each opposite pair can be colored independently, and still 
leave the cube invariant after rotation. This gives 24 
invariant objects.  

For each of the eight D permutations, the cube is 
rotated around a major diagonal and the two vertices 
it connects. The three faces touching each of those 
two vertices must be the same color. This gives 22 
invariant objects.  

For each of the six E permutations, the two faces 
adjacent to the edges that rotate must be the same. The 
top and bottom face must also be the same color. This 
gives 23 invariant objects. 

In total, the Pólya-Burnside Lemma gives 

( ))(6)(8)(3)(6)(
24
1 EDHQI ψψψψψ ++++  
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( )32436 262823262
24
1

⋅+⋅+⋅+⋅+=  

or 10 ways, agreeing with the previous solution. For this particular 
problem, using the Pólya-Burnside Lemma may have been more work 
than otherwise, but we should feel a lot better about not double-counting 
or missing any special cases. 

Now for the magic—let's consider the same problem but with k 
colors instead of just 2. Using the Pólya-Burnside Lemma, the analysis is 
almost identical to that of the 2-color case: 

6)( kI =ψ , 3)( kQ =ψ , 4)( kH =ψ , 2)( kD =ψ ,  and 3)( kE =ψ . 

Thus the total number of unique colorings is 

( ) 248123 2346 kkkk +++  

This result would have been very difficult1 or impossible without the 
use of the Pólya-Burnside Lemma. 

Examples 

We've shown that the Pólya-Burnside Lemma is general-purpose, 
relatively fast, and highly reliable. More important, it can help solve 
problems that would otherwise be next to impossible to solve. To 
demonstrate this power, I encourage you to imagine solving each of the 
following example problems using some other technique. 

Second Cube Example - How many unique ways are there to paint a cube 
with  on each face? 

The two orientations of  behave like two distinct colors, and the 
analysis of invariant objects is the same as before—except for Q, the 
family of 90° rotations. In this case, the top and bottom faces must have 
90° rotational symmetry if the cube is to be an invariant object. But since 

 does not have this symmetry, the count for Q is zero. So instead, the 
total number of unique cubes is  
                                                           
1 This is different from the formula originally given by Gardner [3] in the chapter The Calculus of 
Finite Differences (but corrected in subsequent editions). That formula strangely worked only for 
cases n=1, 2, 3, and 6—perhaps demonstrating the risk of relying solely on empirical results and  
finite differences for such problems. 
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( ) 8262823062
24
1 3246 =⋅+⋅+⋅+⋅+  

Edge-Matching Tiles - How many different square edge-matching tiles are 
there using at most k colors? 

Assuming the tiles are one-sided, there are 4 permutations which can 
be grouped into three familiar categories: I, Q (2 cases), and H. 

For I, there are k4 invariant objects. 

For Q, the four quadrants must all be the same 
color if the tile is to be invariant after a 90° rotation. 
Thus there are just k invariant objects. (Illustrated for 
k=2.) 

For H, a 180° rotation swaps 
pairs of opposite quadrants; thus 
there are k2 invariant objects. 
(Illustrated for k=2. Remember, when counting invariant objects, we 
ignore rotations; so the third and fourth figures are counted separately.) 

The total number of colored tiles is 

( ))()(2)(
4
1 HQI ψψψ ++  

( )24 2
4
1 kkk ++=  

Beveled Tiles1 - In 3D, a square tile has a top face, a bottom face, and 
four side faces. In a beveled tile, each of the four side faces can have one 
of three styles: flat, angled in, or angled out. How many unique beveled 
tiles are possible? 

                                                           
1 This problem was posed by Ed Pegg, Jr. at the 21st International Puzzle Party–Tokyo, in 
preparation for a puzzle design he was considering. 
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A plain square tile is a flattened cube, and has only eight 
permutations: I, Q (2 cases), H (3 cases), and E (2 cases). Because not all 
the faces are square, there are actually two "flavors" of H that must be 
considered separately: H1 is a 180° rotation about the center of the square 
face; H2 includes the two 180° rotations about the center of a side face. 

For I, each side face can have one of three styles, for 34 objects. 

For Q, the tile can be rotated 90° about the center of the square face 
in either direction. To be invariant, a configuration must 
have the same style on all four side faces. Thus there are just 
3 invariant objects. 

For H1, each pair of opposite side faces can have any of 
the three styles, giving 32 invariant objects. 

For H2, the two side faces that stay in the same 
place must be the flat style in order to appear the same 
when turned upside-down. The remaining two side 
faces must be paired, giving 3 invariant objects. 

For E, the tile is rotated 180° about an axis 
connecting the centers of opposite short edges. 
One of the pair of side faces adjacent to such an 
edge can be any of the three styles, and will 
determine the style of the other. The same is true for the opposite edge, 
giving 32 invariant objects. 

Thus, the total number of unique tiles is 

( ))(2)(2)()(2)(
8
1

21 EHHQI ψψψψψ ++++  

( ) 1532323323
8
1 224 =⋅+⋅++⋅+=  

 
Q and H1 

 
H2 

 
E 
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Four Arrows1 - How many different ways can you put six arrows on the 
faces of a cube? (The arrows must be in one of four orthogonal 
orientations). 

The analysis of invariant objects is the same as the k-color cube 
problem (for k=4), except that we must be more careful with the 
orientation of the arrows. 

Case I is the same as before: 46.  

For Q, and H, the top and bottom faces must be invariant after 90° or 
180° rotations, respectively. Since the arrow does not have such 
symmetry, there are no invariant objects for these permutations. 

For D, there are two cycles of three faces. Within each cycle, the 
arrow on one face can be any orientation, forcing the orientation for each 
of the other two (see faces shown in the above figure). Thus there are 42 
invariant objects. 

For E, there are three pairs of faces that cycle. Similar to D, each 
cycle can have four arrow orientations, giving 43 invariant objects. 

The total number of cubes is 

( ))(6)(8)(3)(6)(
24
1 EDHQI ψψψψψ ++++  

( ) 19264616803064096
24
1

=⋅+⋅+⋅+⋅+=  

In all our examples so far, the permutations have all corresponded in 
a clear-cut way to some sort of physical movement.  We finish with one 
more example in which the notion of permutation is somewhat more 
subtle. 

Numbered Slips - How many slips of paper are needed to individually 
print all (zero-filled) n-digit numbers? 

                                                           
1 This problem was most recently posed by Moscovich [7],  problem #200. 
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This problem is tricky because we cannot use the 
expected permutation group of {I, H}—a 180° 
rotation turns some numbers into invalid symbols, 
thus making it invalid as a permutation (see example). 

Instead we must come up with an alternative permutation. C. L. Liu 
[6] defines H' as a 180° rotation for those numbers containing only the 
digits 0,1,6,8,9; otherwise it is the same as I. This is an improvement 
over H, since H' always gives a valid result. And since applying H' twice 
gives I, one can easily show that {I, H'} is in fact a mathematically 
proper permutation group. With this, we can get back to looking at 
invariant objects. 

For I, the total of invariant objects is 10n. 

For H', by definition, all numbers not made of only the symmetry 
digits (0, 1, 6, 8, 9) are clearly invariant. This is 10n-5n slips. For 
numbers using only symmetric digits, we must consider even and odd 
values of n separately. 

For even n, each of the first n/2 digits can be any of five symmetric 
digits, forcing the selection of the last n/2 digits. This gives 25n  
invariant objects. 

For odd n, each of the first (n-1)/2 digits can be any of the five 
symmetric digits, forcing the selection of the last (n-1)/2 digits. The 
middle digit can be one of just three digits (0,1,8) with 180° symmetry, 
giving a grand total of ( ) 2153 −⋅ n  invariant objects. 

The total number of slips is ( ))'()(
2
1 HI ψψ +  

( )( )

( )
⎪
⎪
⎩

⎪⎪
⎨

⎧

−
−

⋅−
−

=

−

evenn

oddn

nn
n

nn
n

,
2
5510

,
2
53510

2

21
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Beyond Pólya-Burnside 

The Pólya-Burnside Lemma is actually just a special case of Pólya's 
Enumeration Theorem [9] (later generalized by de Bruijn [1]). If you 
know the cycle index of a permutation group, you can create a generating 
function that gives a pattern inventory, not just the total count.  

For example, the cycle index for the permutation group of the six 
cube faces is 

( )3
2

2
3

2
2

2
14

2
1

6
1 6836

24
1 xxxxxxx ++++  

For coloring the cube with two colors, represented by r and b, we 
simply substitute ( ii br + ) for ix , giving  

6542332456 222 brbbrbrbrbrr ++++++  

which is the inventory of all possible two-color combinations. Looking 
back at the 2-Color Cube problem, we see that this corresponds exactly 
to the inventory that we found by hand, but derived without the risk of 
missing a case or double-counting. 

For further reading, papers of interest not otherwise cited are 
Burnside [2], Golomb [4], Klass [5], and Read [10]. 
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