A Case Study in Integrating Jultiple E-Commerce Standards via Semantic Web Technology Donald J. Hillman Lehigh University

ECCMA 10<sup>th</sup> Anniversary Conference 27<sup>th</sup> to 29<sup>th</sup> October 2009

Cataloging at Source - the last piece of the puzzle



### **Contract Information**

#### **TAXONOMY MAPPING USING ONTOLOGY STRUCTURES**

| <b>Contract Number:</b> | SP4701-07-C-0006                                           |
|-------------------------|------------------------------------------------------------|
| Sponsor:                | Defense Logistics Information Service                      |
| Contractor:             | Lehigh University                                          |
| Subcontractors:         | Electronic Commerce Code Management<br>Association (ECCMA) |
|                         | <b>Concurrent Technologies Corporation</b>                 |

Effective Dates: September 7, 2007 - March 6, 2009



## Project Staff

- Lehigh University
  - Donald Hillman, Professor & Director
  - Jeff Heflin, Associate Professor & Associate Director
  - Basuki Setio, Graduate Research Assistant (9/07 present)
  - Yang Yu, Graduate Research Assistant (6/08 present)
  - Ameet Chitnis, Graduate Research Assistant, (12/08)
  - Xinlei Wu, Graduate Research Assistant (9/07 1/08)
- Concurrent Technologies Corp.
  - Gerry Radack, Principal Computer Scientist
- ECCMA
  - Peter Benson, President





- Introduction
- Background
- Ontology Construction
- Approach
- Ontology Mapping
- Implementation



## Introduction

#### Motivation

- Heterogeneity underlying B2B customers' product, catalog, and document descriptions
- Taxonomies and classification schemes
  - More than 40 have been publicly identified
    - eCI@ss, UNSPSC, CPV, NAICS, RTD, etc.
- Federal Cataloging System
  - Naming, classifying and describing items of supply for DoD – created & maintained by DLIS
  - Various codes: FSG, FSC, INC, NSN, MRC



These are not batteries!

## Background

#### Taxonomies have varied purposes

#### eCI@ss example:

27 Electric engineering, automation, process control engineering

- 27-05 Accumulator, battery
- 27-05-01 Station. batt., accum.
- 27-05-02 Traction battery, starter battery
- 27-05-04 Portable battery
- 27-05-06 Battery charger
- 27-05-90 Accumulator, battery (other)
- 27-05-91 Accumulator, battery (parts)
- 27-05-92 Accumulator, battery (accessories)
- 27-05-98 Accumulator, battery (maintenance, service)
- 27-05-99 Accumulator, battery (repair)

#### Ontology and Semantic Web



## The Semantic Web

### Definition

The Semantic Web is not a separate Web but an extension of the current one, in which information is given well-defined meaning, better enabling computers and people to work in cooperation. (Berners-Lee et al., Scientific American, May 2001)

### Key International Standards

- World Wide Web Consortium (W3C) recommendations
  - » Resource Description Framework (RDF)
  - » Web Ontology Language (OWL)
- on par with HTML / XML

## Ontology



### Definition

- a logical theory that accounts for the intended meaning of a formal vocabulary (Guarino 98)
- has a formal syntax and unambiguous semantics
- usually more than just a hierarchy / taxonomy
- inference algorithms can compute what logically follows
- Relevance to Web:
  - identify context
  - provide shared definitions
  - eases the integration of distinct resources

## **OWL Class Constructors**



| Constructor    | DL Syntax    | Example                                 |
|----------------|--------------|-----------------------------------------|
| intersectionOf | C1 ∩ C2      | GasTurbine ∩ AircraftPart               |
| unionOf        | C1 ∪ C2      | Door $\cup$ Airframe $\cup$ TailSection |
| complementOf   | −C           | -Aircraft                               |
| oneOf          | {x1,,x2}     | {F15, F16}                              |
| allValuesFrom  | ∀P.C         | ∀partOf.Airframe                        |
| someValuesFrom | ∃P.C         | ∃hasPart.Door                           |
| maxCardinality | <i>≤ n</i> P | ≤10hasPart                              |
| minCardinality | ≥ <i>n</i> P | ≥2hasPart                               |



## Background

- Create ontologies from industrial standards
  - Taxonomies differ in scope and purpose
  - Naming conventions differ across classifications
    - e.g. "bearing, roller" versus "roller bearing"
  - Target taxonomies have one or more deficiencies:
    - lack of definitions or inaccurate definitions
    - lack of freely available electronic version
    - lack of sample data
    - poor superclass/subclass structures
    - inconsistent modeling
    - failure to state/observe modeling conventions



## **Ontology Construction**

#### External Ontologies

|       | Ontology | Original |            | Scope   |            |
|-------|----------|----------|------------|---------|------------|
|       | Ontology | Classes  | Properties | Classes | Properties |
|       | FCS      |          |            | 128     | 2          |
|       | eOTD     | 60000    | 555        | 194     | 180        |
|       | eCl@ss   | 25000    | 5500       | 313     | 18         |
| PLIB  | UNSPSC   | 21000    | 0          | 228     | 0          |
|       | CPV      | 8000     | 0          | 208     | 0          |
| Scope | PLIB-511 | 186      | 204        | 186     | 204        |

 Bearings, Batteries, Microcircuit, Bushings, Fasteners and Gaskets



### eOTD is a lingua franca

Approach

Mappings constitute "mediator" ontologies





# **Ontology Mapping**

#### Mapping process

#### Enriching the eOTD

- Hierarchy
- Abstract classes
  - Remove one or more modifiers
  - identify "foundational" classes from FSGs and FSCs
- Reasoning and Validation
  - FaCT++





## **Ontology Mapping**

- Semantic Discovery and Bridging
  - Most specific subsumer and subsumee
    - "cpv:PrimaryBatteries ⊑ eOTD:BatteryAssemblyAll"
    - "eOTD:BatteryThermal ⊑ cpv:PrimaryBatteries"
  - Union (A  $\equiv$  B  $\sqcup$  C)
    - "fsc:KnobsAndPointers ≡ eOTD:Knob ⊔ eOTD:Pointer"
  - Intersection (A  $\equiv$  B  $\sqcap$  C)
    - "fsc:BearingAntifrictionUnmounted
       ≡ eOTD:Bearing-Antifriction ⊓ eOTD:Bearing-Unmounted"
  - Exclusion (A  $\equiv$  B  $\sqcap$   $\neg$  C)
    - "eOTD:BearingPlain
       ≡ eCl@ss:PlainBearing □ ¬ eCl@ss:PlainBearingParts"
  - Class vs. property distinction (A  $\sqsubseteq \exists P.\{a, b, c\}$ )



## Implementation

#### An example of translation



### Translator Interface



| <u>\$</u> | Translator                                        |             |     |                               |              |     |
|-----------|---------------------------------------------------|-------------|-----|-------------------------------|--------------|-----|
| File      | e Help                                            |             |     |                               |              |     |
|           |                                                   |             |     |                               |              |     |
|           | Ontology Folder D:\SWproject\translator\ont\demo3 |             |     | Source Ontology type eClass   | 💙 🛛 Run 🖉 Sa | ave |
|           |                                                   |             |     |                               |              |     |
|           | Class Crosswalk Property Crosswalk Translate Data |             |     |                               |              |     |
|           | item name                                         | item code 🔺 | Rel | Fcs                           | FcsCode      |     |
|           | AngularContactBallBearing                         | 23.05.08.03 | •   | BearingsAntifrictionUnmounted | 3110         | ~   |
|           | SelfAligningBallBearing                           | 23.05.08.06 | ٠   | Bearings                      | 31           |     |
|           | RadialBallBearingUnclassified                     | 23.05.08.90 | ٠   | BearingsAntifrictionUnmounted | 3110         |     |
|           | RadialRollerBearing                               | 23.05.09    |     |                               |              |     |
|           | CylindricalRollerBearing                          | 23.05.09.01 |     | BearingRollerCylindrical      | 00015        |     |
|           | FlexibleRollerBearing                             | 23.05.09.02 | •   | BearingsAntifrictionUnmounted | 3110         |     |
|           | NeedleRollerAndCageAssemblie                      | 23.05.09.04 |     |                               |              |     |
|           | DrawnCupNeedleRollerBearingWithOpenEnd            | 23.05.09.05 | ٠   | BearingsAntifrictionUnmounted | 3110         |     |
|           | DrawnCupNeedleRollerBearingWithClosedEnd          | 23.05.09.06 | •   | BearingsAntifrictionUnmounted | 3110         |     |
|           | NeedleRollerBearingMachined                       | 23.05.09.07 | •   | BearingsAntifrictionUnmounted | 3110         |     |
|           | AligningNeedleRollerBearing                       | 23.05.09.08 | •   | Bearings                      | 31           |     |
|           | InnerRing                                         | 23.05.09.09 |     |                               |              |     |
|           | TaperedRollerBearing                              | 23.05.09.10 |     | BearingRollerTapered          | 00021        |     |
|           | SphericalRollerBearing                            | 23.05.09.11 | •   | BearingsAntifrictionUnmounted | 3110         |     |
|           | BarrelBearing                                     | 23.05.09.12 | •   | BearingsAntifrictionUnmounted | 3110         |     |
|           | ToroidalRollerBearing                             | 23.05.09.13 | •   | BearingsAntifrictionUnmounted | 3110         |     |
|           | RadialRollerBearingUnclassified                   | 23.05.09.90 | •   | BearingsAntifrictionUnmounted | 3110         |     |
|           | ThrustBallBearingEtc                              | 23.05.10    | •   | Bearings                      | 31           |     |
|           | ThrustBallBearing                                 | 23.05.10.01 |     | BearingBallThrust             | 00019        |     |
|           | AngularContactThrustBallBearing                   | 23.05.10.02 | •   | Bearings                      | 31           |     |
|           | ThrustBallBearingUnclassified                     | 23.05.10.90 | •   | Bearings                      | 31           |     |
|           | ThrustRollerBearing                               | 23.05.11    | •   | Bearings                      | 31           |     |
|           | CylindricalRollerThrustBearing                    | 23.05.11.01 | •   | Bearings                      | 31           | ×   |



## Implementation

#### Summary of mapping results

|          | Classes           |             | Motobing                                                             |    |            |  |
|----------|-------------------|-------------|----------------------------------------------------------------------|----|------------|--|
| Ontology | mapping<br>axioms | Equivalence | <ul> <li>Direct Indirect</li> <li>Subsumption Subsumption</li> </ul> |    | Percentage |  |
| eCl@ss   | 191               | 13          | 21                                                                   | 78 | 58.64      |  |
| UNSPSC   | 103               | 7           | 55                                                                   | 18 | 77.67      |  |
| CPV      | 117               | 1           | 8                                                                    | 23 | 27.35      |  |
| PLIB-511 | 86                | 0           | 13                                                                   | 72 | 98.83      |  |



- Compiler constructed by mappings among ontologies
- Relationships built up as more taxonomies and terms added
- Translator uses compiler to provide online translations of target terms into FCS vocabulary



## Implementation (continued)

#### The complete process of compilation





### Commercial Data Sheet (Grainger)

- We assume the Grainger data items are classified using the eCl@ss taxonomy
  - However, these items have their own set of properties



### Conclusion



- Ontologies provide the means for representing the information in catalogs in a clear and unambiguous manner
- Ontologies have widespread applicability
- OWL has a large and growing user community
- There are potential benefits to be gained from using an ontology-based approach in NSN screening
- Ontologies can provide the means for improving the quality of catalog data and metadata