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Abstract 
Passive packet capture is necessary for many activities including network 
debugging and monitoring. With the advent of fast gigabit networks, packet 
capture is becoming a problem even on PCs due to the poor performance of 
popular operating systems. The introduction of device polling has improved 
the capture process quite a bit but not really solved the problem. 
This paper proposes a new approach to passive packet capture that 
combined with device polling allows packets to be captured and analyzed 
using the NetFlow protocol at (almost) wire speed on Gbit networks using a 
commodity PC. 
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1. Introduction 
Many network monitoring tools are based on passive packet capture. The principle is 
the following: the tool passively captures packets flowing on the network and analyzes 
them in order to compute traffic statistics and reports including network protocols being 
used, communication problems, network security and bandwidth usage. Many network 
tools that need to perform packet capture ([tcpdump], [ethereal], [snort]) are based on a 
popular programming library called libpcap [libpcap] that provides a high level 
interface to packet capture. The main library features are: 
• Ability to capture from various network media such as ethernet, serial lines, virtual 

interfaces. 
• Same programming interface on every platform. 
• Advanced packet filtering capabilities based on BPF (Berkeley Packet Filtering), 

implemented into the OS kernel for better performance. 
 
Depending on the operating system, libpcap implements a virtual device from which 
captured packets are read from userspace applications. Despite different platforms 
provide the very same API, the libpcap performance varies significantly according to 
the platform being used. On low traffic conditions there is no big difference among the 
various platforms as all the packets are captured, whereas at high speed1 the situation 
changes significantly. The following table shows the outcome of some tests performed 
using a traffic generator [tcpreplay] on a fast host (Dual 1.8 GHz Athlon, 3Com 3c59x 
                                                
1 Note that high speed is relative to the speed/specs of the used to capture traffic. 



 

ethernet card) that sends packets to a mid-range PC (VIA C3 533 MHz2, Intel 100Mbit 
ethernet card) connected over a 100 Mbit Ethernet switch (Cisco Catalyst 3548 XL) that 
is used to count the real number of packets sent/received by the hosts3. The traffic 
generator reproduces at full speed (~80 Kpps) some traffic that has been captured 
previously, whereas the capture application is a simple application named pcount based 
on libpcap that counts and discards, with no further analysis, the captured packets. 
 

Traffic Capture Application Linux 2.4.x FreeBSD 4.8 Windows 2K 

Standard Libpcap 0.2 % 34 % 68 % 

Mmap Libpcap 1 %   

Kernel module 4 %   

Table 1. – Percentage of captured packets (generated by tcpreplay) 
 
The experience learnt from this experiment is: 

• At 100 Mbit using a low-end PC, the simplest packet capture application is not 
able to capture everything (i.e. there is packet loss). 

• During the above experiment, the host used for capturing packets was not 
responsive when the sender injected packets on the network.  

• Out of the box, Windows and winpcap [winpcap], the port of libpcap to Win32, 
perform much better than other popular Unix-like OS. 

• Linux, a very popular OS used for running network appliances, performs very 
poorly with respect to other OSs used in the same test. 

• Libpcap-mmap [libpcap-mmap], a special version of libpcap that exploits the 
mmap() system call for passing packets to user space, does not improve the 
performance significantly. 

• Implementing a Linux kernel module based on netfilter [netfilter] improves the 
performance significantly, but still under Linux most of the packets are lost. 
This means that Linux spends most of its time moving packets from the network 
card to the kernel and very little from kernel to userspace. 

 
An explanation for the poor performance figures is something called interrupt livelock 
[mogul]. Device drivers instrument network cards to generate an interrupt whenever the 
card needs attention (e.g. for informing the operating system that there is an incoming 
packet to handle). In case of high traffic rate, the operating system spends most of its 
time handling interrupts leaving little time for other tasks. A solution to this problem is 
something called device polling [rizzo]. Polling is a technique for handling devices, 
including network cards, that works as follows: 

• When a network device receives a packet it generates an interrupt to request 
kernel attention. 

• The operating system serves the interrupt as follows: 
                                                
2 This PC has almost the same speed of a low-end Pentium-III based PC. 
3 Many people believe that the interface counters (e.g. the values provided by ifconfig or netstat –ni) 
can be trusted. This statement is true if the system is able to handle all the traffic. If not, the receiver will 
usually display values that are (much) less than the real traffic. 



 

o It masks future interrupts generated by the card (i.e. the card cannot 
interrupt the kernel). 

o It schedules a task for periodically polling the device to service its needs. 
o As soon as the driver has served the card, the card interrupts are enabled. 

 
Although this technique may seem not to be effective, in practice it gives the operating 
system control over devices and it prevents devices from taking over control over the 
kernel in case of high traffic rate. FreeBSD implements device polling since version 4.5 
whereas Linux has introduced it with NAPI (New API)4. Note that the network device 
driver must be polling-aware in order to exploit device polling. The author has repeated 
the previous traffic experiment on Linux and FreeBSD (Windows does not seem to 
support device polling nor provide facilities for enabling it) using device polling. The 
figure below shows how systems behave when the input traffic increases. Basically as 
long as the system has enough CPU cycles to handle all the traffic, there is not much 
difference between the different setups. However for non-polling systems there is a 
maximum full-capture speed (see the vertical dashed line represented in the figure 
below) after which the system spends most of the available cycles to handle interrupts 
leaving little time to other tasks, hence the packet loss. 

                 
Figure 1. – Packet Capture Performance: Polling vs. non-polling 

 
The results represented in table 1 show that, when plotting the curve of figure 1 for 
different operating systems in the case where polling is not used, there is always a 
dashed line. The performance figures of table 1 just show that for Linux the dashed line 
is on the left with respect to the one of FreeBSD, but that there is always a point after 
which the system will start losing packets. 
 
The experience learnt from this experiment is: 

• Device polling is a very good solution to improve both packet capture 
performance and system responsiveness under high traffic load. 

• Device polling, especially on FreeBSD, has some disadvantages in terms of 
CPU utilisation. Moreover various experiments using different FreeBSD kernel 

                                                
4 NAPI support is available from kernel 2.4.23 onwards. 



 

setups (e.g. with HZ value ranging from 1000 to 5000), libpcap tuning (e.g. 
increasing the receiver pcap buffer) and kernel parameters (sysctl 
kern.polling.*) do not significantly affect the overall performance nor the CPU 
utilization. 

• Even with kernel polling, FreeBSD performs significantly better than Linux 
running the same userspace libpcap-based application. 

 
The following chapter explains why device polling is just the starting point and not the 
ultimate solution. 
 
2. Beyond Device Polling 
As shown in the previous chapter, the very same simple libpcap-based application 
performs significantly different on Linux and FreeBSD. The gap between the two 
operating systems changes at Gbit speeds using a modified version of stream.c5 as 
traffic generator (Dual 1.8 GHz Athlon, Intel Gbit ethernet card) that sends packets to a 
mid-range PC (Pentium III 550 Mhz, Intel Gbit ethernet card) connected over a cross 
cable. In all the tests libpcap has been configured to capture the first 128 bytes of the 
packet (pcap snaplen parameter). 
 

Packet Size 
(bytes) 

Linux 2.6.1 
with NAPI 

and standard libpcap 

Linux 2.6.1 
with NAPI 

and libpcap-mmap6 

FreeBSD 4.8 
with Polling 

64 2.5 % 14.9 % 97.3 % 

512 1.1 % 11.7 % 47.3 % 

1500 34.3 % 93.5 % 56.1 % 

Table 2. – Percentage of captured packets (generated by stream.c) using kernel polling 
 
After running all the experiments, the author realized that: 

• Linux needs a new speed bump for efficiently capturing packets at high network 
speeds. The mmap version of libpcap is a big improvement but it is not very 
efficient with small packets. 

• FreeBSD performs much better than Linux with small packets, but its 
performance decreases with large packets. 

• Kernel device polling is not sufficient for capturing (almost) all packets in all 
the different setups. 

 
Doing some further measurements, it seems that most of the time is spent moving the 
packet from the adapter to the userspace through the kernel data structures and queues. 
The mmap-version of libpcap reduced the time spent moving the packet from the kernel 
to userspace but has not improved at all the journey of the packet from the adapter to 
                                                
5 stream.c, a DoS (Denial of Service), can be downloaded from 
http://www.securiteam.com/unixfocus/5YP0I000DG.html. 
6 The test has been performed with the following setup: PCAP_FRAMES=max PCAP_TO_MS=0 
PCAP_SNAPLEN=128 



 

the kernel. Therefore the author has designed a new packet capture model based on the 
following assumptions and requirements: 

• Design a solution for improving packet capture performance that is general and 
not locked to a specific driver or operating system architecture. 

• Given that network adapters are rather cheap, it is not too costly to allocate a 
network adapter only for passive packet capture, as the goal is to maximize 
packet capture performance and not reduce the overall costs. 

• Device polling proved to be very effective, hence (if available) it should be 
exploited to improve the overall performance. 

• For performance reasons, it is necessary to avoid passing incoming packets to 
the kernel that will pass then to userspace. Instead a straight path from the 
adapter to the user space needs to be identified in order to avoid the kernel 
overhead. 

• Facilities such as packet sampling should be implemented efficiently. In fact 
with the current libpcap, in case of sampling all the packets are moved to 
userspace and then the sampled packets are discarded with a large waste of CPU 
cycles. 

 
The idea behind this work is the following: 

• Create a new type of socket (PF_RING) optimized for packet capture that is 
based on a circular buffer where incoming packets are copied. 

• The buffer is allocated when the socket is created, and deallocated when the 
socket is deactivated. Different sockets will have a private ring buffer. 

• If a PF_RING socket is bound to an adapted (via the bind() syscall), such 
adapter will be used in read-only mode until the socket is destroyed. 

• Whenever a packet is received from the adapter (usually via DMA, direct 
memory access), the driver passes the packet to upper layers (on Linux this is 
implemented by the netif_receive_skb and netif_rx functions depending 
whether polling is enabled or not). In case the PF_RING socket, every incoming 
packet is copied into the socket ring or discarded if necessary (e.g. in case of 
sampling when the specified sample rate has not been satisfied). If the buffer is 
full, the packet is discarded. 

• Received packets for adapters with bounded PF_RING sockets, by default are 
not forwarded to upper layers but they are discarded after they have been copied 
into the rings. This practice increases the overall performance, as packets do not 
need to be handled by upper layers but only by the ring. 

• The socket ring buffer is exported to userspace applications via mmap (i.e. the 
PF_RING socket supports mmap). 

• Userspace applications that want to access the buffer need to open the file, then 
call mmap() on it in order to obtain a pointer to the circular buffer. 

• The kernel copies packets into the ring and moves the write pointer forward. 
Userspace applications do the same with the read pointer. 

• New incoming packets overwrite packets that have been read by userspace 
applications. Memory is not allocated/deallocated by packets read/written to the 
buffer, but it is simply overwritten. 

• The buffer length and bucket size is fully user configurable and it is the same for 



 

all sockets. 
 

 
Figure 2. PF_RING Socket Architecture 

 
The advantages of a ring buffer located into the socket are manifold, including: 

• Packets are not queued into kernel network data structures. 
• The mmap primitive allows userspace applications to access the circular buffer 

with no overhead due to system calls as in the case of socket calls. 
• Even with kernel that does not support device polling, under strong traffic 

conditions the system is usable. This is because the time necessary to handle the 
interrupt is very limited compared to normal packet handling. 

• Implementing packet sampling is very simple and effective, as sampled packets 
do not need to be passed to upper layers then discarded as it happens with 
conventional libpcap-based applications. 

• Multiple applications can open several PF_RING socket simultaneously without 
cross interference (e.g. the slowest application does not slow the fastest 
application down). 

 
The main difference with respect to normal packet capture is that applications that rely 
on libpcap need to be recompiled against a modified (ring/mmap-aware) version of the 
library as incoming packets are stored into the buffer and no longer in the kernel data 
structures. For these reason the author has extended libpcap with PF_RING support (on 
Linux the libpcap uses PF_PACKET sockets). 
 
In order to evaluate the performance of the proposed architecture, the author has 
modified the Linux kernel code and implemented the PF_RING socket into a module. 
The modified kernel has been tested in the same environment used previously in order 
to evaluate the performance advantage with respect to the original kernel. The following 
table shows the test outcome. 



 

 
Packet 

Size 
(bytes) 

Linux 2.6.1 
with NAPI 
and libpcap 

standard 

Linux 2.6.1 
with NAPI 

and 
libpcap-mmap7 

FreeBSD 4.8 
with Polling 

Linux 2.6.1 
with NAPI+PF_RING 
and extended libpcap 

 

64 2.5 % 14.9 % 97.3 % 75.7 % 

512 1.1 % 11.7 % 47.3 % 47.0 % 
1500 34.3 % 93.5 % 56.1 % 92.9 % 

Table 3. – Percentage of captured packets (generated by stream.c) using kernel polling 
 
Basically the new solution: 

• Has improved the packet capture speed with respect to the standard Linux. 
• With large packets the PF_RING is as fast as libpcap-mmap(), whereas with 

medium/large packets is much faster. 
• Still many packets are lost, especially with medium size packets. 

 
A userspace application that has to access a mapped memory buffer can do it in two 
ways: with or without ring polling. 

 
Packet Handling with Polling Packet Handling without Polling 

 
sockFd = socket(PF_RING, SOCK_RAW,     
                htons(ETH_P_ALL); 
.. 
ringBufferPtr = mmap(NULL, ringSize,                
                     PROT_READ|PROT_WRITE, 
                     MAP_SHARED, sockFd, 0); 
 
slotId = &ringBufferPtr->slotId; 
 
while(TRUE) { 
   /* Loop until a packet arrives */ 
   if(ringBufferPtr->slot[slotId].isFull) { 
     readPacket(ringBufferPtr->slot [slotId]); 
     ringBufferPtr->slot [slotId].isFull = 0; 
     slotId = (slotId + 1) % ringSize; 
   } 
} 

 
sockFd = socket(PF_RING, SOCK_RAW,     
                htons(ETH_P_ALL); 
.. 
ringBufferPtr = mmap(NULL, ringSize,  
                     PROT_READ|PROT_WRITE,  
                     MAP_SHARED, sockFd, 0); 
 
slotId = &ringBufferPtr->slotId; 
 
while(TRUE) { 
   if(ringBufferPtr->slot [slotId].isFull) { 
     readPacket(ringBufferPtr->slot [slotId]); 
     ringBufferPtr->slot [slotId].isFull = 0; 
     slotId = (slotId + 1) % ringSize; 
   } else { 
     /* Sleep when nothing happens */ 
      pfd.fd = fd; 
      pfd.events = POLLIN|POLLERR; 
      pfd.revents = 0; 
      poll(&pfd, 1, -1); 
   } 
} 

Table 4. – Packet Retrieval in userspace Applications: poll() vs. polling 
 
From the tests performed, it seems that the use of polling at userspace is not really 
effective in terms of performance gain. Actually when userspace polling is used, the 
CPU usage bumps from 12% (with 512 bytes packets) to over 95%, leaving fewer 
cycles to packet capture applications. After repeating the same test several times, the 
conclusion is that the use of userspace polling does not seem to improve the overall 
performance, or that at best the performance gain is not easy to measure. For this 
reason, all the ring-buffer tests have been performed using the poll() system call that has 
                                                
7 The test has been performed with the following setup: PCAP_FRAMES=max PCAP_TO_MS=0 
PCAP_SNAPLEN=128 



 

the advantage of keeping the system load low with respect to userspace polling that 
exhausts all the available CPU cycles. 
 
What the author has noticed while performing the tests is that with the PF_RING 
solution, there is still some packet loss, although there are plenty of CPU cycles. For 
example, the CPU is loaded only at 8% when capturing 1500 bytes packets, with a 
packet loss of about 7%. This is somehow a contradiction, as the system should use the 
spare cycles to capture all the packets. After performing some measurements inside the 
Linux kernel using rdtsc (Real Time Stamp Counter)8, the author noticed that at high 
incoming packet rate: 

• A dummy (i.e. that return immediately) call to poll() is rather costly (well over 
1000 cycles) and its cost increases significantly with the network load. This 
means that at high speeds while the user application is waiting the poll() to 
return, the kernel is discarding packets, as the ring is full. 

• Kernel locks (spinlocks) used by PF_RING and kernel are rather costly in terms 
of waiting time. 

 
As a consequence, there is a packet loss because the userspace application is blocked on 
the poll() although the system has plenty of CPU cycles available. Even allocating a 
large kernel buffer did not really help, as the system was still unpredictable regarding 
the time spent doing other activities. For this reason the author decided to look for a 
Linux kernel patch that provided predictability, namely the ability to determine task 
completion with some time constraints. Using a patch (rtirq) for prioritising interrupts, 
hence having a low and precise latency in the Linux 2.4.x kernel [kuhn], the results of 
the test changed dramatically as we can now capture all the traffic regardless of the 
packet size. There is still some packet loss that is due to errors on interface (e.g. packet 
overrun). Another advantage of using the rtirq patch is that the CPU load on the receiver 
is very limited (less than 30%) leaving plenty of CPU cycles for real traffic analysis. 
The following table shows how nProbe [nprobe] 3.0, an open source NetFlow v5/v9 
probe written by the author, behaves with respect to simple packet count9. 
 

Packet 
Size 

(bytes) 

Linux 2.4.23/RTIRQ 
NAPI+PF_RING 

(Pkt Capture) 

FreeBSD 4.8 
with Polling 

(Pkt Capture) 

Linux 2.4.23/RTIRQ 
NAPI+PF_RING 

(nProbe) 

FreeBSD 4.8 
with Polling 

(nProbe) 

64 207’603 pps 202’013 pps 192’515 pps 142’153 pps 

512 172’576 pps 81’691 pps 165’966 pps 64’350 pps 

1500 72’545 pps 40’690 pps 72’156 pps 34’986 pps 

Table 5. – Captured and analyzed packets (no sampling) 
 
                                                
8 rdtsc is a Pentium instruction that returns the number of clock cycles since the CPU was powered up or 
reset. 
9 Unfortunately the author is using a PC for generating traffic, as he has no access to a hardware traffic 
generator for testing the architecture to its upper limit. Alternative solutions (e.g. a L2 switch with STP 
disabled, two ports in loop via a cross cable, with a broadcast packet injected) offer speed similar to the 
PC in terms of packet speed generation. 



 

As the table shows: 
• As Linux/RTIRQ/PF_RING has a limited load on the CPU, packet analysis 

using NetFlow performs almost as simple packet capture with very limited 
packet loss. 

• As mentioned before, FreeBSD is rather efficient with packet capture, but its 
extreme load on the CPU is a penalty when more complex activities such as 
NetFlow analysis are required, as there are limited CPU cycles available for 
userspace applications.  

• The implemented solution: 
o Significantly both reduced the journey of the packet from the network 

card to the traffic capture application, and decreased the load on the 
kernel. 

o Made the capture process independent from the packet size point of 
view, in terms of work done on the kernel (of course, the load on the 
PCI bus is the same as a vanilla kernel as the card moves the whole 
packet to the kernel even if only a portion of the packet might be 
necessary for traffic analyses). 

• It is possible to analyze using NetFlow traffic flowing across Gbit network using 
a commodity PC and software network probes. 

 
In order to understand the limit of the proposed architecture, a different test-bed has 
been used: using the same sender host, the receiver PC has been replaced with a 
Pentium 4 running at 1.7 GHz with a 32 bit Intel GE ethernet card. The table below 
shows the test outcome. 
 

Packet 
Size 

(bytes) 

Linux 2.4.23/RTIRQ 
NAPI+PF_RING 

(Pkt Capture) 

Linux 2.4.23/RTIRQ 
NAPI+PF_RING 

(nProbe) 

64 550’789 pps ~202 Mbit 376’453 pps ~144 Mbit 
512 213’548 pps ~850 Mbit 213’548 pps ~850 Mbit 

1500 81’616 pps ~970 Mbit 81’616 pps ~970 Mbit 
Table 6. – PF_RING Evaluation (Receiver Pentium 4 1.7 GHz, Intel GE 32-bit) 

 
As the table shows, the NetFlow analysis is limited by the available CPU cycles and 
there’s a moderate packet loss only with tiny packets, whereas with medium and large 
packets there is basically no loss. The errors on the receiving interface have 
significantly decreased with respect to the previous setup; probably they can be reduced 
to zero using a 64-bit PCI card on the receiver side. 
Considering that Gbit networks usually have jumbo (>= 9000 bytes) MTUs, the 
PF_RING solution can very well be used for analyzing traffic at wire speed. 
Furthermore, it is worth to remark that the figures shown in table 6 using a low-end PC, 
are far better than many high-end routers available on the market. 
 
3. Work In Progress 
PF_RING has significantly improved the performance of packet captures. However it 



 

has two limitations: 
• It requires a kernel real-time patch in order to improve the system call 

performance and in particular of poll(). 
• Its performance is limited by both the way network drivers are written as well as 

the way NAPI fetches packets from the network adapter. 
 
In the last month the real-time patch issue has been solved using an adaptive poll 
algorithm. In other words, whenever there are no packets to process, the library sleeps 
for a limited amount of time (usually a few nano-seconds, because otherwise the system 
will loose packets as the userspace application will not fetch packets from the kernel) 
before poll() is called. If, after the sleep, there are still no packets available, poll() is 
called, otherwise packets are processed immediately. The sleep time is adapted 
according to the incoming packet rate: the more incoming packets means shorter (or 
zero) sleep time. Thanks to this trick, poll() is called very seldom hence avoiding the 
need to improve system calls performance with third party patches.  
 
As said before, PF_RING reduces significantly the journey of a packet from the 
network driver to userspace. In order to further improve the packet capture performance 
it is necessary to modify the implementation of network card drivers. This is because 
drivers have been written for general-purpose applications and are not optimized for 
packet capture, as a new socket buffer is allocated/freed for each incoming packet. This 
practice is necessary if the packet has to be queued in kernel structures, but it is a waste 
of time if incoming packets are handled by PF_RING as they are copied into the ring 
and then discarded. Some early experiments have demonstrated that hacking the driver 
significantly increases the overall performance. In fact in the same scenario of table 6, 
the capture speed has been increased to: 

• Over 800 Kpps simply using a hacked Intel driver with an adaptive poll() 
algorithm without the RTIRQ patch. 

• Over 1.2 Mpps using a Xeon PC with a 64 bit Ethernet card. 
 
Future work items include: 

• The positioning of this work with respect to commercial cards such as the DAG 
card [dag]. 

• Evaluation of the proposed architecture on a 10 Gbit network10 using a fast PC, 
in order to evaluate its scalability. 

• Study of the features that can be implemented with respect to packet 
transmission in order to have a complete send/receive architecture. 

 
4. Final Remarks 
This paper has described the design and implementation of a new approach to packet 
capture whose goal is to improve the performance of the capture process at Gbit speeds. 
The validation process has demonstrated that: 

• A new type of socket in addition to changes into the Linux kernel, has 
significantly improved the overall capture process at both 100 Mbit and Gbit. It 

                                                
10 Intel is currently selling 10 Gbit Ethernet adapter cards for x86 PCs. 



 

is now possible to capture packets at wire speed with almost no loss at Gbit 
speeds using a commodity PC. 

• Userspace applications based on the circular buffer are faster than an equivalent 
kernel module not using the ring code running on the same PC using vanilla 
Linux. 

• At Gbit speeds, packet loss is very minimal, if any, even using PCs with limited 
CPU power. 

 
In conclusion, it is now possible to analyze traffic at Gbit speeds using commercial 
protocols such as NetFlow using commodity PCs without the need to purchase 
expensive hardware. When 10 Gbit cards will become cheaper, it will be worth to 
explore how the described solution performs in such situations. 
 
5. Availability 
This work is distributed under the GPL2 license and can be downloaded free of charge 
from the ntop home page (http://www.ntop.org/) and other mirrors on the Internet (e.g. 
http://sourceforge.net/projects/ntop/). 
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