mySQL

SELECT
Dim1, Dim2,
SUM(Measurel) AS MSum,
COUNT(*) AS RecordCount,
AVG(Measure2) AS MAvg,
MIN(Measurel) AS MMin
MAX (CASE
WHEN Measure2 < 100
THEN Measure?2
END) AS MMax
FROM DenormAggTable
WHERE (Filter1 IN (’A’,’B’))
AND (Filter2 = ‘C’)
AND (Filter3 > 123)
GROUP BY Dim1, Dim2
HAVING (MMin > 0)
ORDER BY RecordCount DESC
LIMIT 4, 8

@ Grouped dimension columns are pulled
out as keys in the map function,
reducing the size of the working set.

@ Measures must be manually aggregated.
@ Aggregates depending on record counts
must wait until finalization.

@ Measures can use procedural logic.

@ Aggregate filtering must be applied to
the result set, not in the map/reduce.

@ Ascending: |; Descending: - |

NS

2 Vg

l o

db. runCommand ({
mapreduce: "DenormAggCollection”,

query: {
filter1: { '$in': ['A", 'B" 1 1},
filter2: 'C’,
filter3: { '"$gt’': 123 }
s

map: function() { emit(
{ d1: this.Dim1, d2: this.Dim2 },
{ msum: this.measurel, recs: 1, mmin: this.measurel,
mmax: this.measure2 < 100 ? this.measure2 : 0 }

reduce: function(key, vals) {
var ret = { msum: 0, recs: 0, mmin: @, mmax: @ };
for(var i = 0; i < vals.length; i++) {
ret.msum += vals[i].msum;
ret.recs += vals[i].recs;
if(vals[i].mmin < ret.mmin) ret.mmin = vals[i].mmin;
if((vals[i].mmax < 100) && (vals[i].mmax > ret.mmax))
ret.mmax = vals[i].mmax;

}

return ret;
3, R R REEEEEEEE :
finalize: function(key, val) {
val.mavg = val.msum / val.recs;
return val;
s
out: 'resultl’,
verbose: true
;s
db.resultl.-----
find({ mmin: { "$gt’': 0 } }).
sort({ recs: -1 }).
skip(4).
limit(8);

-

