Teoria de Ramsey

Charles Morgan (University College, London)

Definições

Seja X um conjunto e sejam λ , κ , μ cardinais.

Escreveremos a cardinalidade de X como |X|.

Uma **partição** de X em λ partes é qualquer função $f: X \longrightarrow \lambda$.

Assim $X = X_0 \dot{\cup} X_1 \dot{\cup} \dots \dot{\cup} X_i \dot{\cup} \dots$ para $i < \lambda$.

$$[X]^{\kappa} = \{ Y \subseteq X \mid |Y| = \kappa \}.$$

Um κ -grafo sob X é simplesmente qualquer subconjunto A de $[X]^{\kappa}$. Os elementos de X são os **vértices** do grafo e os elementos de A são as (κ) -arestas.

Um **grafo** é um 2-grafo — seja qualquer conjunto equipado com uma relação binária assimétrica.

H = (Y, B) é um **subgrafo** do G = (X, A) se $Y \subseteq X$ e $B = A \cap [Y]^{\kappa}$. Então H tem todas as arestas que G tem entre os vértices no Y.

Uma **coloração** do grafo G = (X, A) com μ cores é uma função $f : A \longrightarrow \mu$.

Um subgrafo H = (Y, B) de G = (X, A) é homogêneo ou monocromático por uma coloração do G se |f"B| = 1.

$$(f"B = \{ f(b) \mid b \in B \}.)$$

Teorema de Ramsey (1930)

Sejam $n, r < \omega$. Se $f : [\omega]^n \longrightarrow r$, existe $X \in [\omega]^\omega$ (então um subconjunto infinito do ω) e existe um p < r tal que $f''[X]^n = \{p\}$.

(*I.e.*, para qualquer coloração com r cores do n-grafo completo sob um conjunto enumerável existe um subconjunto infinito do conjunto tal que o sub-n-grafo induzido no subconjunto é monocromático.)

Mote: Em qualquer confusão não se pode evitar de achar ordem/estrutura.

Princípio de casas dos pombos.

Indução.

Notação húngara:

$$\kappa \longrightarrow (\lambda)^{\mu}_{\gamma}$$
 se
$$\forall f: [\kappa]^{\mu} \longrightarrow \gamma \; \exists X \in [\kappa]^{\lambda} \; |f``[X]^{\mu}| = 1.$$

Miniaturização – o teorema de Ramsey finito:

$$\forall m, k, l \in \mathbb{N} \exists n \in \mathbb{N} n \longrightarrow (m)_l^k$$

é evidente da demonstração do teorema de Ramsey infinito.

(Outro esquema (para cada par fixo de k e l): use o teorema de compacidade para a lógica da primeira ordem para mostrar o teorema de Ramsey infinito do teorema finito. Ex.)

Def. R(k) = 0 n mínimo t.q. $n \longrightarrow (k)_2^2$

R(3) = 6, R(4) = 18. Mas o valor de R(k) é desconhecido para $k \ge 5$.

$$R(k) \leq 2^{2k}$$

[Começa com um grafo completo de tamanho 2^{2k} . Use o princípio de casas de pombos 2k vezes para obter no fim um conjunto de vértices com a propriedade que a cor da aresta ligando x_i e x_j só depende do mínimo de i e j, e depois use o princípio mais uma vez.]

(Erdös) $R(k) \geq 2^{k/2}$

[Começa com um grafo completo de tamanho N. Escolha as cores das arestas entre os x_i e x_j independentemente, sendo vermelho com probabilidade de 1/2 e azul com probabilidade de 1/2. Seja $\{x_1,\ldots,x_k\}$ um conjunto de vértices. A probabilidade que todas as arestas entre elas sejam vermelhas é de $2^{-(k.(k-1)/2}$ e de que todas sejam azuis é a mesma. Seja ${}^{N}C_{k}$ o número de modos de escolher k coisas de N. Então o número esperado dos conjuntos de vértices com todas as arestas da mesma cor é $2^{1-(k.(k-1)/2)}$. ${}^{N}C_{k}$. Se este número é menos que 1 deve ser possível que não existam tais conjuntos. E o número é menos que 1 se N < k/2.]

ref: W.T.Gowers, "Two Cultures of Mathematics", "Rough Strucutre and Classification". www.dpmms.cam.ac.uk/~wtg.html

Generalização do alvo

(Erdös-Rado)
$$(2^{\omega})^+ \longrightarrow (\omega_1)_2^2$$

(Sierpinski)
$$2^{\omega} \not\longrightarrow (\omega_1)_2^2$$

[Mais geralmente, $(2^{\kappa})^+ \longrightarrow (\kappa^+)_2^2$ (E-R) e $2^{\kappa} \not \longrightarrow (\kappa^+)_2^2$ (S), para κ regular.]

Nota: $R(\omega) = \omega$, mas $R(\kappa^+) = (2^{\kappa})^+ > \kappa^+$.

(Todorcevic (1986)): no **não** eumerável tem situações onde é impossível fugir do grau máximo de caos:

existem colorizações $c: [\omega_1]^2: \longrightarrow \omega_1$ tal que para qualquer $X\subseteq \omega_1$ com $|X|=\aleph_1$ temos $c''[X]^2=\omega_1$.

Não podemos tomar qualquer passo na direção da estrutura

[Em símbolos falamos $\omega_1 \not\longrightarrow [\omega_1]_{\omega_1}^2$.]

Demonstração elementária, mas intricada.

Mesmo resultado para cardinais κ^+ quando κ é regular.

E os cardinais não sucessores — isto é, limites?

Chamamos cardinais κ t.q. $\kappa \longrightarrow (\kappa)_2^2$ e $\omega < \kappa$ de **fracamente compactos**.

Tais cardinais são limites (Sierpinski - em cima) e regulares, e então $V_{\kappa} \models ZFC$.

Isto é um primeiro passo na teoria dos "cardinais grandes" - que fortalecem os axiomas da teoria dos conjuntos.

A teoria de Ramsey aqui tem um papel muito influente no desenvolvimento da sofisticada teoria do "core models" (Jensen, Steel,...)

Generalização do exponente

(Axioma de Escolhas) não tem teoremas do tipo Ramsey **positivos** para partições da forma $f:[X]^{\kappa} \longrightarrow \gamma \text{ com } \kappa \text{ infinito - com "exponentes" infinitos - em geral.$

Então temos que estudar coleções mais restringidas das colorizações.

(Silver) Se $f: [\mathbb{N}]^{\omega} \longrightarrow k$ é Borel (ou mesmo analítico) na topologia do produto, $k < \omega$, então existe $X \in [\mathbb{N}]^{\omega}$ t.q. $|f''[X]^{\omega}| = 1$.

(Mathias) mesmo resultado se f é definível dos ordinais e reais.

Topologia de Ellentuck (refinamento da topologia do produto): conjuntos abertos básicos são da forma $\{X \mid s \subseteq X \subseteq s \cup S\}$ para pares $s \in [\mathbb{N}]^{<\omega}$ e $S \in [\mathbb{N}]^{\omega}$ com $\max(s) < \min(S)$.

(fn. o mundo sem Ax. de Escolhas: spp e AD!)

Generalização do tipo do alvo

Perguntas sobre ordinais, eg., para quais $\alpha \in$ On temos que $\forall f: [\alpha]^2 \longrightarrow 2$ ou existe $X \subseteq \alpha$ com otp $(X) = \gamma$ e f " $[X] = \{0\}$ (conjunto "azul") ou existe $Y \subseteq \alpha$ com |Y| = 3 e f " $[Y]^2 = \{1\}$ (triângulo "vermelho"). [Eg., $\gamma = \omega + 1$.]

[Notação: $\alpha \longrightarrow (\gamma, 3)_2^2$.]

Enquanto $\omega_2.\omega \longrightarrow (\omega_2\omega,3)_2^2$ o análogo $(\omega_3.\omega_1 \longrightarrow (\omega_3\omega_1,3)_2^2)$ **não** pode ser mostrado no ZFC.

(van der Waerden) Para qualquer coloração de № existem progressões aritméticas monocromáticas de toda extensão finita.

(Hindman: teorema de somas finitas) Para todo $n, k \in \mathbb{N}$ e $c : \mathbb{N} \longrightarrow k$ existem x_0, \ldots, x_{n-1} t.q. $|\{c'' \Sigma_{i \in A} x_i \mid A \subseteq n, A \neq \emptyset \}| = 1.$

(Hales-Jewitt). Seja A um conjunto finito e $d \in \mathbb{N}$. Uma reta em A^d é um conjunto da forma, para $I \subseteq d$, $I \neq \emptyset$ e $c_i \in A$ para i < d, de $L = \{x_0, \ldots, x_{d-1} \mid \forall i \ j \in Ix_i = x_j \ \forall i \in d \setminus Ix_i = c_i\}$.

 $\forall A \text{ finito } \forall k \in \mathbb{N} \; \exists d \; \forall c : A^d \longrightarrow k$ $\exists L, \text{ uma reta, que \'e monocromática.}$

$$[\mathsf{HJ}\Longrightarrow\mathsf{vdW}:\mathsf{seja}\;\phi(x_0,\ldots,x_{d-1})=\Sigma_{i< d}x_i.]$$

"Teorema de Ramsey dual" (Carlson-Simpson), e muitas outras variações. (Gowers) Teorema de dicotomia. Seja X um espaço de tipo Banach que é separavel e de dimensão infinita. Então existe $Y \subseteq X$ t.q. ou existe uma base não condicional para Y ou Y é hereditariamente indecomponível.

(Szemeredi) Versão de densidade do teorema de van der Waerden.

(Green-Tao) Para qualquer coloração de \mathbb{P} , os números primos, existem progressões aritméticas monocromáticas de toda extensão finita. Também versão de densidade.

[**Densidade**: $A \subseteq \mathbb{N}$ tem densidade diferente de zero se $\limsup_{n \longrightarrow \infty} (A \cap n/n) > 0$. $A \subseteq \mathbb{P}$ tem densidade diferente de zero se $\limsup_{n \longrightarrow \infty} (A \cap n)/(\mathbb{P} \cap n) > 0$.]

(cf. a teoria restringada abaixo)

Técnicas (além da combinatória "pura"):

Teoria ergódica. (Furstenberg, Bergelson et al.)

Teoria de semi-grupos e idempotentes (particularmente $\beta\mathbb{N}$, o espaço dos ultrafiltres no \mathbb{N}). (Hindman et al.)

Análogos da topologia de Ellentuck, e técnicas do **forcing** e a teoria de jogos infinitos (estas últimas duas da teoria dos conjuntos). (Carlson e Simpson, muitos outros; Gowers, Bagaria e Lopez-Abad)

[Não só para resultados de consistência, mas também para teoremas absolutos.]

Lema de regularidade de Szemeredi. ["Classificação" de grafos.]

Análise harmônica/de Fourier. (Gowers, Green-Tao)

Moto de Tao sobre densidade/Szemeredi:

"Cada conjunto de densidade positiva é (ou contém um subconjunto pseudorandom grande de um conjunto estruturado.

Mas o que quer dizer "densidade", "pseudorandom", "grande" e "estruturado" varia dependendo do campo matemático.

ref: W.T.Gowers *ob.cit.*; T.Tao, "The Dichomtomy Between Structures and Randomness, Arithmetic Progressions, and the Primes" www.math.ucla.edu/~tao

Outras áreas:

Teoria de Ramsey no topologia geral (Todor-cevic et al)

Teoria de Ramsey estrutural (em outras categorias)

Teoria de Ramsey restringida.

Teoremas de tipo Ramsey/anti-Ramsey para grafos além dos grafos completos.

(Folkman) Existe um grafo G=(X,A) que não contém um subgrafo isomorfico ao K_4 , mas para que para cada $c:A\longrightarrow k$ existe $y\in [X]^3$ t.q. $A\cap [y]^2\sim K_3$ e $|c''A\cap [y]^2|=1$.

"Grafos podem ter propriedades de Ramsey mesmo sendo com poucas arestas."

van der Waerden restringido: dado $n \in \mathbb{N}$ existe um subconjunto finito de \mathbb{N} t.q. para qualquer colorização deste conjunto existe uma progressão aritmética de extensão n, mas o conjunto não contém qualquer progressão aritmética de extensão n+1.

Esparso: não tem ciclos - $T_0a_0T_1e_1...a_{n-1}T_n$, os T_i triângulos, os $a_i \in T_i \cap T_{i+1}$ arestas, 0 < n e $T_0 = T_n$.

(Nestril-Rödl) 'Folkman' para um grafo esparso. Versão esparso da teorema de somas finitas.

Técnica: amalgamação. (cf. teoria de Ramsey estrutural).

(Leader) Versões restringidas da teoria das matrizes com regularidade para partições.

Seja $X \in [\omega]^{\omega}$. Definimos $FS_k(X)$ como a coleção de somas de no máximo k elementos do X, e $FS(X) = \bigcup_{k \in \mathbb{N}} FS_k(X)$.

(Hindman) Para qualquer colorização finita de \mathbb{N} existe um conjunto infinito $X \subseteq \mathbb{N}$ t.q. FS(X) é monocromático.

Pergunta aberta: Seja $k \in \mathbb{N}$. Existe $S \subseteq \mathbb{N}$ t.q. para qualquer colorização finita de S existe um subconjunto monocromático da forma $FS_{\leq k}(X)$, mas t.q. S não contém nenhum conjunto da forma $FS_{\leq k+1}(X)$?

Ou (mesmo): Existe $S \subseteq \mathbb{N}$ t.q. para qualquer colorização finita de S existe um conjunto monocromático da forma $FS_{\leq 2}(X)$, t.q. mas S não contém nenhum conjunto da forma FS(X)?

ref: Hindman, Leader, Strauss: members.aol.com/nhindman

Também parecemos estar longe de ter caracterizações de quando (para quais grafos) estes teoremas restringidos/esparsos se obtêm.

Teoria de Ramsey não contável restringido.

Atentos de Hajnal-Komjath a geralizar a teorema de Todorcevic.

No mínimo o grafo G=(X,A) precisa ser \aleph_1 -cromático: não existe $f:X\longrightarrow \omega$ t.q. para todo $i\in\omega$ $E\cap\{x\in X\mid f(x)=i\}=\emptyset$. (densidade!?!)

Resultados positivos em alguns modelos da teoria dos conjuntos. E negativos em outros (eg, para o conclusão da teorema de Todorcevic). ref: www.math.rutgers.edu/~ahajnal/

Perguntaram se é verdadeiro que sendo G = (X, A) um grafo \aleph_1 -cromático, sempre tem

$$\exists c : A \longrightarrow \omega_1 \ \forall f : X \longrightarrow \omega \ \exists i < \omega$$
$$|c'' A \cap [f^{-1}"\{i\}]^2)| = \omega_1$$
?

(Nota: uma resposta "sim" daria uma caracterização de quando o teorema restringido — dando exemplos dos grafos que não contém K_{ω_1} — obter-se-ia.)

(M.) No fato temos um teorema restingido/de densidade. Sempre existem grafos \aleph_1 -cromáticos que não contém K_{ω_1} e satisfazem

$$\exists c : A \longrightarrow \omega_1 \ \forall f : X \longrightarrow \omega \ \exists i < \omega$$
$$|c''(A \cap [f^{-1}''\{i\}]^2)| = \omega_1.$$

Embora, ainda não resolvemos completemente a pergunta de Hajnal e Komjath.

Hajnal-Komjath tiveram esta propriedade para κ^+ no lugar de ω_1 , κ um cardinal regular, em alguns modelos da teoria de conjuntos.

(Džamonja, Komjath, M) Tem modelos da teoria dos conjuntos em que a propriedade se obtém (ao menos para grafos de até qualquer tamanho predeterminado) para κ^+ com κ singular. $[cf(\kappa) = \omega.]$

As demonstrações usam técnicas sofisticadas da teoria dos conjuntos.

Mas ainda não deram resultados quando a cofinalidade de κ é mais que ω .