Determinação de *outliers* para Pequenas Amostras

Anderson da Silva Soares¹, Clarimar José Coelho², Gustavo Teodoro Laureano³, Daniel Vitor Lucena⁴, e Roberto Kawakami Harrop Galvão⁵

- ¹ Universidade Católica de Goiás, Departamento de Computação, Brasil barnesucg@hotmail.com
- ² Universidade Católica de Goiás, Departamento de Computação, Brasil clarimar@brturbo.com
- ³ Universidade Católica de Goiás, Departamento de Computação, Brasil gustavoeng@hotmail.com
- ⁴ Universidade Católica de Goiás, Departamento de Computação, Brasil danielvitor@brturbo.com

⁵ Instituto Tecnológico de Aeronáutica, Divisão de Engenharia Eletrônica, Brasil kawakami@ita.cta.br

Resumo Determinação de *outliers* em pequenas amostras empregando método de Bonferroni e gráficos de controle. É feito um breve resumo da teoria e o conceito de *outlier* também é introduzido. A título de ilustração, é considerado o problema de monitorar variáveis que influenciam a qualidade das amostras multivariadas analisadas. A análise é feita com base em dados de espectrometria de emissão atômica em plasma. Os resultados obtidos demonstram que os métodos empregados são eficientes para estimar os parâmetros populacionais de pequenas amostras e obtenção de limites de controle estatístico LCS e LCI.

Palavras chaves: Detecção de *outliers*, Controle de qualidade, inferência estatística.

1 Introducão

Inferência estatística obtém conclusões válidas para uma população baseada em populações amostrais [3]. O problema de verificar se um determinado valor μ_0 é plausivel para a verdadeira média populacional desconhecida pode ser resolvido através do teste

$$H_0: \mu = \mu_0 \quad vs \quad H_1: \mu \neq \mu_0 \tag{1}$$

onde, H_0 é a hipótese nula e H_1 é a hipótese alternativa.

A presença de valores moderados em uma população normal é mais provável que a presença de valores extremos [6]. Assim, a suposição de normalidade de uma população qualquer é devida à alta probabilidade dos dados serem normalmente distribuídos [4][13]. Seja $\{X_1, X_2, \ldots, X_n\}$ uma amostra aleatória extraída de uma população normal para o caso univariado. O teste estatístico para esta hipótese, quando p = 1 é:

$$t = \frac{(\bar{X}^- \mu_0)}{\frac{S}{\sqrt{n}}} \tag{2}$$

onde, $\bar{X} = \frac{1}{n} \sum_{j=1}^{n} X_j$, $S^2 = \frac{1}{n-1} \sum_{j=1}^{n} (X_j - \bar{X})^2$ e p é o número de colunas da matriz de dados.

O teste mostrado na equação (2) segue a distribuição de t-student com n-1 graus de liberadade. A hipótese H_0 é rejeitada se o valor observado para |t| exceder um valor (crítico) específico da distribuíção de t-student.

A distância quadrada da média amostral \bar{X} também pode ser considerada para o valor a ser testado. A hipótese H_0 pode ser rejeitada a um nível de significância α , se

$$t^{2} = n(\bar{X} - \mu_{0})(S^{2})^{-1} \ge t^{2}_{n-1}(\alpha/2)$$
(3)

onde, $t_{n-1}^2(\alpha/2)$ é o quantil quadrático superior $100(\alpha/2)$ da distribuição de *t*-student com n-1 graus de liberdade.

Se H_0 não é rejeitada, então μ_0 é um valor plausível para representar a média populacional normal ou existem outros valores de μ consistentes com os dados. A partir da correspondência entre a região de aceitação dos testes de hipóteses e o intervalo de confiança para μ , tem-se:

$$\left|\frac{\bar{X} - \mu_0}{\frac{S}{\sqrt{n}}}\right| < t_{n-1}(\alpha/2) \tag{4}$$

a não rejeição de H_0 equivale a:

$$\bar{X} - t_{n-1}(\alpha/2)\frac{S}{\sqrt{n}} \le \bar{X} + t_{n-1}(\alpha/2)\frac{S}{\sqrt{n}}$$
(5)

O intervalo de confiança $100(1 - \alpha)\%$ é aleatório e depende das variáveis aleatórias \bar{X} e S. A probabilidade desse intervalo conter μ é $100(1 - \alpha)\%$.

Para o caso multivariado o problema consiste na determinação de um vetor $\mu_0(p \times 1)$ plausível para a média de uma distribuição normal multivariada. A generalização da distância quadrada mostrada na equação (3) é dada por

$$T^{2} = n(\bar{\mathbf{X}} - \mu)^{T} S^{-1} (\bar{\mathbf{X}} - \mu_{0})$$
(6)

onde,

$$\bar{\mathbf{X}} = \frac{1}{n} \sum_{j=1}^{n} \mathbf{X}_j, S = \frac{1}{n-1} \sum_{j=1}^{n} (\mathbf{X} - \bar{\mathbf{X}}) (\mathbf{X} - \bar{\mathbf{X}})^t$$

A equação (6) é conhecida como distribuição de Hotelling. A distribuição de Hotelling não necessita de tabelas com pontos percentuais para a realização dos testes de hipótese devido T^2 ser distribuída como:

$$\frac{(n-1)p}{n-p}F_{p,n-p}\tag{7}$$

onde $F_{p,n-p}$ é uma variável com distribuição F com $p \in n-p$ graus de liberdade. A distribuição de Hotelling pode ser generalizada para pequenas observações de modo que a análise de todo o grupo é dada por

$$T_j^2 = (X_j - \bar{X})^T S^{-1} (X_j - \bar{X})$$
(8)

O teste de hipótese $h_0: \mu = \mu_0$ geralmente não satisfaz o analista no caso multiviariado. A estimação de uma região de confiança envolve a quantificação do valor de um determinado parâmetro populacional desconhecido. O teste de hipótese indica decisão a ser tomada sobre o valor específico do parâmetro populacional. Assim, é preferível encontrar regiões de valores μ plausíveis para representar a média populacional para os dados observados [7].

A região de confiança μ para uma distribuição normal p variada serão todos os valores de μ dados por

$$P\left[n(\bar{\mathbf{X}}-\mu)^T S^{-1}(\bar{\mathbf{X}}-\mu) \le \frac{(n-1)p}{n-p} F_{p,n-p}(\alpha)\right]$$
(9)

O cálculo do valor μ_0 plausível para μ é dado pela distância quadrada generalizada $n(\bar{\mathbf{X}} - \mu)^t S^{-1}(\bar{\mathbf{X}} - \mu)$. O resultado é comparado com $(n-1)pF_{p,n-p}(\alpha)/(n-p)$. p). Se a distância quadrada for maior que $(n-1)pF_{p,n-p}(\alpha)/(n-p)$, então μ_0 não pertence a região de confiança. O teste da hipótese $H_0 : \mu = \mu_0$ versus $H_1 : \mu \neq \mu_0$ permite afirmar que a região de confiança é constituída por todos os valores de μ_0 cujo teste T^2 não rejeita a hipótese nula a favor da hipótese alternativa a um nível de significância α .

2 Gráficos de Controle

Gráficos de controle são registros de dados mensurados em pontos críticos para um processo estatístico e construídos num sistema de coordenadas cartesianas [8]. O eixo das ordenadas é representado por mensurações para uma determinada característica. O eixo das abscissas é representado por subgrupos da amostra analisada e definidos com uma divisão racional da amostra coletada [11]. Paralelo ao eixo das abscissas são definidas duas linhas de controle obtidas a partir da expressão:

$$\mu \pm 3 * \sigma \tag{10}$$

 $\operatorname{com} \sigma = \sqrt{S}.$

As linhas paralelas ao eixo das abscissas são definidas como Limite de Controle Superior (LCS) e Limite de Controle Inferior (LCI). A Figura 1, mostra o gráfico de Shewhart [12] construído a partir do vetor \mathbf{x}_2 [10]. As medições obtidas são representadas na ordem do tempo e comparadas com os limites de controle. Se alguma medição ultrapassar os limites de controle o processo é considerado fora dos limites de controle estatístico e o valor identificado é definido como *outlier*. Concluir que determinado valor de um conjunto de dados é *outlier*, é subjetivo. A definição de *outliers* é sujeita à análise e interpretação de resultados. Decisões a respeito da identificação de *outliers* devem ser tomadas individualmente e dependem de um experimento específico [4]. Os valores de \mathbf{x}_2 , mostrados na Figura 1, estão localizados dentro dos limites LCI e LCS. Neste caso, assumese que nenhum valor do conjunto de dados é considerado *outlier*.

Figura 1. Gráfico de controle de Shewhart com limites de controle LCS e LCI.

Os limites LCS e LCI mostrados na Figura 1 são obtidos, respectivamente, pela soma e subtração da expressão (10).

O trabalho de Shewhart é baseado na classificação de pequenas variações aleatórias inerentes ao processo estatístico que prejudicam a inferência [12]. Assim, a variável de \mathbf{x}_2 escolhida para análise é monitorada individualmente por meio de sucessivas amostras espaçadas no tempo, desprezando-se possíveis correlações entre as variáveis.

Jonhson [4] descreve dois fatores discriminantes no uso do método T^2 para controle estatístico que leva o analista a conclusões erradas sobre a detecção de *outliers*. O primeiro, diz respeito ao uso direto da distância quadrada definida na equação (9) para definição dos limites de controle. Quando o método T^2 sinaliza a *j*-ésima variável fora de controle deverão ser determinadas quais observações são responsáveis pelo *outlier*. O segundo, diz respeito a utilização da expressão (10) para pequenas amostras, onde o parâmetro σ da população verdadeira não pode ser conhecido e requer o uso de um estimador \bar{X} para μ .

Pequeno número de intevalos de confiança μ é requerido em muitas situações da análise multivariada. Assim, intervalos de confiança constituem uma boa alternativa para estimar \bar{X} . Esta alternativa é conhecida como método de Bonferroni:

$$\bar{\mathbf{X}}_i \pm \mathbf{t}_{n-1} \left(\frac{\alpha}{2p}\right) \sqrt{\frac{S_{ii}}{n}} \quad i = 1, 2, \dots, p = m \tag{11}$$

O método de Bonferroni deriva da distribuição de t-student sendo indicado para um conjunto pequeno de dados multivariados [5]. Estima-se com $\alpha = 95\%$, o vetor de parâmetros populacionais μ_0 da equação (10) para pequenas amostras para a obter os limites de controle estatístico LCS e LCI, respectivamente.

3 Exemplo de Aplicação

Apresenta-se os resultados obtidos para pequenas amostras. Pequenas amostras,

Figura 2. Outlier na variável \mathbf{x}_2 detectado com os limites de controle LCS e LCI.

possuem número de observações menores que 35 [9]. Dados espectroscópicos

foram extraídos da análise de amostras de aço-ligas contendo Manganês (Mn), Molibdênio (Mo), Cromo (Cr), Níquel (Ni) e Ferro (Fe) conforme descrito em Pimentel [10]. Os dados são apresentados na forma matricial: linhas representam observações amostrais; colunas representam as variáveis analisadas.

Figura 3. Reta de Regressão Linear sobre \mathbf{x}_2 e **YtesteFe** com o *outlier*

O vetor coluna \mathbf{x}_2 é extraído da matriz **XtesteFe**. De modo que, o vetor \mathbf{x}_2 contém 34 linhas da segunda coluna de **XtesteFe**. Todas as variáveis de **XtesteFe** são analisadas e nenhum valor é considerado *outlier* considerando os critérios utilizados. Como no exemplo da seção 2, devido o fato da matriz de dados **XtesteFe** ter sido pré-processada. Assim, o valor da linha 16 do vetor \mathbf{x}_2 é alterado de 6.7 para 0.7 para demonstrar o método.

A Figura 2 ilustra a presença de *outlier* após emprego do método para o vetor \mathbf{x}_2 alterado. Constata-se que algum valor da observação número 16 extrapola o limite de controle inferior. Quando isto ocorre, diz-se que *outliers* são detectados, segundo critérios estabelecidos pelo método empregado. A Figura 3, mostra a reta de regressão linear [1][2] para valores de \mathbf{x}_2 e **YtesteFe** e as alterações provocadas pelo *outlier* em \mathbf{x}_2 . Isto significa que o *outlier* interfere bruscamente na interpretação de resultados. Neste exemplo, a reta de regressão se inclina a um ponto irreal para a base de dados analisada.

A interpretação é modificada quando o *outlier* é excluído de \mathbf{x}_2 . A Figura 4, mostra a reta de regressão para \mathbf{x}_2 e **YtesteFe** sem a presença do *outlier*.

Figura 4. Reta de Regressão Linear sobre as variáveis x_2 e YtesteFe sem o *outlier*

Observe que a reta de regressão tem outra inclinação em relação a anterior. Altera-se a inferência quanto aos possíveis valores a serem preditos pela reta de regressão na relação das variáveis independentes e dependentes.

4 Conclusão

Este trabalho apresenta os resultados obtidos com o método de Bonferroni e gráficos de controle para análise multivariada. O método de Bonferroni e gráficos de controle foram empregados para a determinação de *outliers* estabelecendo limites de controle inferior e superior. Neste exemplo particular, introduziu-se um *outlier* num conjunto de dados pré-processados para o teste do método proposto. Trabalhos futuros incluem o estudo e o desenvolvimento de software para a análise multivariada empregando técnicas tradicionais em quimiometria como regressão linear múltipla, regressão em componentes principais e regressão em mínimos quadrados parciais.

Agradecimentos

Pesquisa suportada pela PROPE-UCG através do projeto número 577 e fundos BIC-UCG. Detalhes do projeto podem ser encontrados na página de administração de projetos da UCG (www.ucg.br/pesquisa).

À $\operatorname{Prof}^{a} \operatorname{Dr}^{a}$ Maria Fernanda Pimentel (Universidade Federal de Pernambuco) pela cessão dos dados de espectrometria de emissão em plasma.

Referências

- 1. Coelho, C. J. Calibração Multivariada Empregando Transformada Wavelet Adaptativa, Tese de Doutorado, ITA, São José dos Campos, (2002).
- Chatterjee, S., Hadi, A. S. and Price, B. Regression Analysis By Example, v. 1, John Wiley (2000).
- 3. da Fonseca, J. S. Estatística Aplicada, v. 1, Atlas (2002).
- 4. Johnson, R. A. and Wichern, D. W. Applied Multivariate Statistical Analysis, v. 1, Prentice Hall (2002).
- Draper, N. R. and Smith, H. Applied Regression analysis, v. 1, 3, Wiley-Interscience (1998).
- 6. Downing, D. and Clark, J. Estatística Aplicada, v. 1, Saraiva (2000).
- Kleinbaum, D. G., anda Keith E. Muller, L. L. K. and Nizm, A. Applied Regression Analysis and Other Multivariable Methods, v. 1, (1998).
- Konrath, A. C. Decomposição da estatística do gráfico de controle multivariado t de hotelling por meio de um algorítmo computacional, Universidade Federal de Santa Catarina (2002).
- Levine, D. M., Berenson, M. L. and Stephan, D. Estatística: Teoria e aplicações, v. B, n. 52, p. 2151-2161 Spectrochimica Acta (1997).
- Pimentel, M. F., de Barros Neto, B., de Araújo, M. C. U. and Pasquini, C. Simultaneous multielemental determination using a low-resoluiton inductively coupled plasma spectrometer/diode array detection system, Spectrochimica Acta 52 p. 2151–2161 (1997).
- Ross M., Sheldon. Introduction to Probability Models Seventh Edition, Berkeley, Califórnia, (2000).
- Shewhart, W. A. The applications of statistics as an aid in maintaining quality of manufactured products., Journal of the American Statistical Association 20: 20 p.546–548 (1925).
- 13. Spiegel, Murray R. Theory and Problems of Probability and Statistics, Schaum's Outline Series, Mc Graw-Hill, New York, (1992).